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1
Introduction

1.1 Conceptual beauty and relevance

Rayleigh-Bénard (RB) convection, i.e. the flow of a fluid heated from below and
cooled from above, is the classical system to study thermally driven turbulence in
confined space. It played a crucial role in the development of stability theory in hy-
drodynamics [1, 2] and had been paradigmatic in pattern formation and in the study
of spatial-temporal chaos [3, 4]. The beauty of the system is that on one hand it is
mathematically very well-defined, namely by the extended Navier Stokes equations
with its appropriate boundary conditions, and can thus be analyzed in numerical sim-
ulations and theoretical studies. On the other hand, the system is easily accessible in
experiments. Hence, RB convection is very well suited to test new techniques and
concepts in Physics of Fluids. For this system, experiments, numerical simulations,
and theoretical analysis are complementary: A combination of these techniques is
mandatory to get a better understanding of the system.

Buoyancy-driven flow also plays a role in many natural phenomena and techno-
logical applications. In most cases the density differences within the fluid are due
to temperature differences. In addition, there are many cases in which the fluid flow
is affected by rotation, for example, in geophysical flows, astrophysical flows, and
flows in technology.

On Earth, many large-scale fluid motions are driven by temperature-induced buoy-
ancy, while the length scales of these phenomena are large enough to be influenced by
the Earth’s rotation. Key examples include the convection in the atmosphere [5] and
oceans [6], including the global thermohaline circulation [7]. These natural phenom-
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2 CHAPTER 1. INTRODUCTION

ena are crucial for the Earth’s climate. It is for example argued that the thermohaline
circulation can have different distinct states and models show that the transitions be-
tween these states can be very sudden when a certain threshold is passed. There
is evidence that past shutdowns of the circulation drastically cooled the climate all
around the North Atlantic in a matter of years by stalling the current that brings warm
water northwards [8, 9].

The interplay between rotation and convection has also been very important in
human history, as this interplay causes the trade winds [10]. For centuries the trade
winds were used to cross the world’s oceans. They made the trade routes across the
Atlantic and Pacific oceans possible and enabled the expansion of the European em-
pire into the Americas. Nowadays, these winds are an important ingredient in weather
prediction models as these winds act as a steering flow for tropical storms that form
over the Atlantic, Pacific, and Southern Indian Oceans, before they make landfall in
North America, Southeast Asia, and India, respectively. Similar zonal flows can be
found on other planets in our solar system, for example on Neptune, Uranus, Saturn,
and Jupiter [11, 12], although it is not known whether these are driven by convection
alone. Rotating convection also plays a significant role in the spontaneous reversals
of the Earth’s magnetic field that protects the Earth from dangerous solar winds [13].
During reversals the strength of this magnetic field can decrease significantly, due to
which solar winds can damage life and electronic equipment on Earth [14].

Knowledge about the influence of rotation on thermal convection is also important
for the optimization of various industrial applications. Examples include the convec-
tive cooling in turbomachinery [15], and the efficient separation of carbon dioxide
(CO2) from nitrogen or methane gas. This efficient separation of CO2 is one of the
central processes in the energy context: This holds both for the separation of CO2
from nitrogen in the emission gases of conventional carbon-based power plants to
enable the long term storage of CO2 and for the separation of CO2 from methane
gas in gas exploration fields. In both cases the method of choice is pressurization and
cooling down of the gas mixture so that finally CO2 condensates into droplets and can
be separated in a centrifuge or in so-called rotational phase separators (RPS), which
recently have been developed [16]. Due to the droplet condensation, considerable
heat transfers emerge in this process which are strongly affected by rotation. It is
therefore crucial to understand the effect of rotation on heat transfer within turbulent
flow.

Hence, rotating RB convection, which is discussed in detail in part II of this thesis,
is a relevant model for many geophysical, astrophysical, and industrial flows and the
results can be used to better understand the basic physics of these problems.

The strength of the driving in RB convection is indicated by the Rayleigh num-
ber Ra, which indicates the dimensionless temperature difference in the system. In
the beginning of the twentieth century a theoretical analysis of Lord Rayleigh [17]
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showed that the critical Ra number for the onset of convection is 1708. This analysis
confirmed the earlier experimental results of Henry Bénard [18, 19]. In these exper-
iments Bénard observed that just above the onset of convection a regular pattern of
hexagonal convection cells is formed. A further increase in Ra, and thus in the driv-
ing of the system, first leads to time-dependent flow, chaotic time dependence, and
eventually turbulence. All examples given above are in the turbulent regime, where
the Ra number becomes very high. To understand this high Ra number regime better
we study it in direct numerical simulations (DNS) in part I of this thesis, where the
simulation results will be compared with experimental results from other groups. We
emphasize again that numerical simulations and experiments on RB convection are
complementary, because different aspects of the problem can be addressed. Namely,
in accurate experimental measurements of the heat transfer a completely isolated
system is needed. Therefore, one cannot visualize the flow while the heat transfer is
measured. On the positive side, in experiments one can obtain very high Ra numbers
and long time averaging. In DNS, on the other hand, one can simultaneously measure
the heat transfer while the complete flow field is available for analysis. But the Ra
number that can be obtained in simulations is lower than in experiments, due to the
computational power that is needed to fully resolve the flow. Hence, a combination
of experimental and numerical work is required to further improve our understanding
of RB convection.

A way to simplify the sometimes difficult analysis of complex three-dimensional
(3D) flows is to look at the two-dimensional (2D) analogue. In part III of this thesis
we analyze the flow in the boundary layers, i.e. the flow close to the walls, in 2D RB
simulations and experiments. In addition, we will look into the mechanism behind
spontaneous flow reversals, which offers us insight to better understand similar spon-
taneous flow transitions in nature, such as the spontaneous reversals of the Earth’s
magnetic field.

In the next section we will introduce some general aspects of RB convection, that
will be used throughout this thesis. After this general introduction we will give a
detailed introduction to each part of this thesis.

1.2 Rayleigh-Bénard convection

1.2.1 Dimensionless parameters

There have been many investigations of non-rotating RB convection and a compre-
hensive summary of all this work is given in the review papers by Ahlers, Grossmann
& Lohse [20] and Lohse and Xia [21]. For not too large temperature gradients, the
system is usually described by the Oberbeck-Boussinesq approximation [22–24] in
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which the fluid density ρ is assumed to depend linearly on the temperature T ,

ρ(T ) = ρ(T0) [1−β (T −T0)] , (1.1)

where β is the thermal expansion coefficient and T0 is some reference temperature.
In addition, it is assumed that the material properties of the fluid such as β , the vis-
cosity ν , and the thermal diffusivity κ do not depend on temperature. The governing
equations of the RB problem are then the Oberbeck-Boussinesq equations. When we
take the z-axis parallel to gravity these equations read

∂u
∂ t

+u ·∇u = −∇p+ν∇
2u+βgθ ẑ, (1.2)

∂θ

∂ t
+u ·∇θ = κ∇

2
θ (1.3)

for the velocity field u, the kinematic pressure field p, and the temperature field θ

relative to some reference temperature. Note that ρ(T0) has been absorbed in the
pressure term. In addition to the Oberbeck-Boussinesq equations we have the conti-
nuity equation (∇ ·u = 0). A no-slip (u = 0) velocity boundary condition is assumed
at all the walls. Moreover, the hot bottom and the cold top plate are at a constant
temperature, and no lateral heat flow is allowed at the sidewalls.

Within the Oberbeck-Boussinesq approximation and for a given cell geometry,
the dynamics of the system is determined by two dimensionless control parameters,
namely, the Rayleigh number

Ra =
βg∆L3

κν
, (1.4)

where g is the gravitational acceleration, ∆ = Tb−Tt the difference between the im-
posed temperatures Tb and Tt at the bottom and the top of the sample, respectively,
and the Prandtl number

Pr =
ν

κ
. (1.5)

The cell geometry is described by its shape and an aspect ratio. All 3D cells consid-
ered in this thesis are cylindrical cells with aspect ratio Γ = D/L, where D is the cell
diameter of the sample, and L is its height. For 2D cells the aspect-ratio is Γ = w/L,
where w is the width of the RB cell. The key response of the system is the heat flux
from bottom to top. The dimensionless heat flux is defined as

Nu =
QL
λ∆

, (1.6)

where Q is the heat-current density and λ the thermal conductivity of the fluid in the
absence of convection. Within the Oberbeck-Boussinesq approximation one obtains
for incompressible flow

Nu =
〈uzθ〉A,t −κ∂3〈θ〉A,t

κ∆L−1 . (1.7)
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Figure 1.1: Visualization of the large scale circulation in 2D RB convection for Ra= 109 and Pr = 4.38.
Here red indicates warm upflowing fluid and blue cold downflowing fluid. The vectors indicate the
velocity field. See also part III of this thesis.

Here 〈·〉A,t denotes the average over any horizontal plane and over time, and ∂3 the
spatial derivative in vertical direction.

The second key system response is the extent of turbulence, expressed in terms
of a characteristic velocity amplitude U , non-dimensionalized by ν/L to define a
Reynolds number

Re =
UL
ν

. (1.8)

There are various reasonable possibilities to choose a velocity, e.g., the components
or the magnitude of the velocity field at different positions, local or averaged am-
plitudes, etc. Of particular interest is the velocity and the dynamic behavior of the
large scale circulation (LSC), which is a domain filling circulation cell that is spon-
taneously generated in the fluid, see figure 1.1 for 2D Rayleigh-Benard convection.
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1.2.2 The Grossmann-Lohse theory

The heat transfer in a non-rotating RB system can satisfactorily be described by the
Grossmann-Lohse (GL) theory [25–28]. The basis of this theory is a set of two exact
relations for the kinematic and thermal energy dissipation rates εu and εθ , respec-
tively, namely

εu ≡ ν〈(∇u)2〉V,t =
ν3

L4 (Nu−1)RaPr−2, (1.9)

εθ ≡ κ〈(∇θ)2〉V,t = κ
∆2

L2 Nu. (1.10)

Here 〈·〉V,t indicates that volume and time averages are taken. The central idea of the
theory is to split the volume averaged kinetic and thermal dissipation rate into the
respective bulk and boundary layer contributions,

εu = εu,BL + εu,bulk, (1.11)

εθ = εθ ,BL + εθ ,bulk. (1.12)

The motivation for this splitting is that the physics of the bulk and the boundary
layer contributions to the dissipation rate is fundamentally different and thus the cor-
responding contributions must be modeled differently. Furthermore, the GL theory
assumes that there exists a large scale circulation, which defines a Reynolds number
Re =UL/ν , and that the boundary layers behave, at least scalingwise, as is described
by the laminar Prandtl-Blasius boundary layer theory for flow over an infinitely long
flat plate, see section 1.2.3. The assumption that the kinetic and thermal dissipation
rate can be splitted as indicated in equation (1.11) and (1.12 means that there are four
different turbulent regimes, namely regime I in which both εu and εθ are dominated
by the BL contribution, regime II in which εu is dominated by εu,bulk and εθ by εθ ,BL,
regime III in which εu is dominated by εu,BL and εθ by εθ ,bulk, and regime IV in which
both εu and εθ are dominated by their bulk contributions. The main result of the GL
model is a set of equations, which describes Nu(Ra,Pr) and Re(Ra,Pr). Over the
years the predictions resulting from this theory have shown to be very reliable. For a
more detailed summary of the GL theory we refer to section II B of Ref. [20].

1.2.3 Prandtl-Blasius boundary layer theory

One of the basic assumptions of the GL-model is that the boundary layers in RB con-
vection, at least scalingwise, behave as is described by the Prandtl-Blasius boundary
layer theory for flow over an infinitely long flat plate. Discussions about the Prandtl-
Blasius boundary layer theory can be found in several textbooks like, Loitsianski and
Szablewski [29], Schlichting [30], Landau and Lifshitz [24], Guyon [31], and Kundu
[32]. A detailed discussion of the Prandtl-Blasius boundary layer theory will be given
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in chapter 4. Here it suffices to say that according to the Prandtl-Blasius boundary
layer theory the kinetic boundary layer thickness scales as

λu

L
= aRe−1/2, (1.13)

where a is a dimensionless prefactor of order one, and the thermal boundary layer
thickness scales as

λθ

L
∼ Re−1/2Pr−1/2 for Pr� 1, (1.14)

λθ

L
∼ Re−1/2Pr−1/3 for Pr� 1. (1.15)

Meanwhile it is well known [20] that most RB experiments and all RB simulations
are in the regime where the kinetic boundary layers are expected to be governed by
laminar flow dynamics. The experiments of Sun, Cheung & Xia [33] have found that,
despite the intermittent emission of plumes, the Prandtl-Blasius type laminar bound-
ary layer description is indeed a good approximation, in a time-averaged sense, both
in terms of its scaling and its various dynamical properties. In order to further ver-
ify that the boundary layers in RB convection indeed behave as is described by the
Prandtl-Blasius theory we will investigate the boundary layer profiles over a wide
range of Ra and Pr numbers in chapter 13. Here we will use the method introduced
by Zhou & Xia [34] to study the boundary layer profiles in the time dependent refer-
ence frame. The result of this analysis will show that the kinetic and thermal bound-
ary layer profiles in RB convection are indeed well described by the Prandtl-Blasius
boundary layer theory. In chapter 4 we will use this theory to derive a theoretical es-
timate for the minimum number of computational nodes that should be placed inside
the thermal and kinetic boundary layers close to the horizontal plates in a DNS. The
results from this analysis will be used throughout this thesis to check the numerical
resolution of the presented simulations.

1.3 Guide through the thesis

This thesis contains three main parts. In part I we will study the results from high Ra
number DNSs in cylindrical samples. In part II we will consider the effect of rotation
on turbulent thermal convection both with experiments and DNSs and in part III we
will study 2D RB convection, again both with experiments and DNSs. We will now
give a more comprehensive introduction to the three part of this thesis.

1.3.1 Part I - High Rayleigh number thermal convection

The very high Ra number regime is of interest for astrophysical and geophysical ap-
plications, where Ra numbers can easily reach values of Ra = 1020. However, the
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Figure 1.2: Nu vs Ra for Γ = 0.23 and Γ = 0.5. The green downward pointing triangles are experi-
mental data from Niemela et al. [35]. [35, 36] after a reanalysis reported in Ref. [37], the red squares
are from Chavanne et al. [38], the purple diamonds are from Ahlers et al. [39–42] (all Γ = 0.5), and the
upward pointing cyan triangles are from Roche et al. [43] (Γ = 0.23). The DNS results of Amati et al.
[44] are indicated by the black dots, the vertical black lines indicate the errorbars. Simulations in the
same parameter regime, not shown in this figure, are discussed in chapter 2 and 3.

kinetic boundary layer is expected to become turbulent at Ra ≈ 1014 (for Pr = 0.7)
and for higher Ra numbers the system is expected to enter the so-called ultimate
regime [20]. In 1962, Kraichnan ∗ [45], followed by Spiegel in 1971 [46], postu-
lated that the heat transfer and strength of turbulence in this ultimate regime are not
influenced by the thermal and kinetic boundary layers, and thus that the kinematic
and thermal diffusivity do not play any significant role in the heat flux anymore. The
flow would than become bulk dominated. He predicted that the heat transport in the
ultimate regime should scale like

Nu ∼ Ra1/2(lnRa)−3/2Pr+1/2 for Pr < 0.15, (1.16)

Nu ∼ Ra1/2(lnRa)−3/2Pr−1/4 for 0.15 < Pr ≤ 1. (1.17)

The logarithmic corrections follow from the to viscous sublayers induced by no-slip
boundary conditions. Ever since Kraichnan’s prediction scientist have tried to find
evidence for this ultimate regime.

In numerical studies of Lohse and Toschi [47] and Calzavarini et al. [48] the
scaling of this ultimate regime is observed in so-called homogeneous RB convection.

∗For curiosity, we note that Robert Kraichnan was Albert Einstein’s last postdoc and it was him who
directed Kraichnan to turbulence.
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In this system the top and bottom temperature boundary conditions are replaced with
periodic ones, while a mean temperature gradient is imposed. In addition this system
is horizontally periodic. Also confinement to the side with cylinders still leads to
Nu ∼ Ra1/2, see Schmidt et al. [49], in spite of the sidewall boundaries. There are
also some interesting experiments, which try to mimic this homogeneous RB system.
Gilbert et al. [50] used a vertical channel with wide entrance and exit sections to avoid
any influence of the thermal boundary layers on the Nusselt number. They found a
scaling, which is consistent with the ultimate regime predicted by Kraichnan, when
they redefined Ra in terms of the natural coherence length based on the amplitude of
the temperature fluctuations instead of a geometric quantity. The same scaling was
obtained in the experiments by Cholemari and Arakeri [51, 52]. These authors report
on a new type of turbulent flow that is driven purely by buoyancy. The flow is induced
by an unstable density difference, created by using brine and water, across the ends
of a long vertical pipe. With the Ra number based on the local density gradient, they
found a homogeneous turbulent region in the midlength of the pipe.

However, up to now the question remains whether this ultimate regime can also be
achieved in real RB convection. Between 1996 and 2001 Chavanne et al. [38, 53, 54]
performed experiments with helium at very low temperatures in an aspect ratio Γ =
0.5 cell. These experiments reached Ra numbers up to Ra ≈ 1015. In this dataset,
see figure 1.2, one can see a strong increase in the heat transport at Ra ≈ 1011 and
Chavanne et al. [38, 53, 54] interpreted this as a transition towards the ultimate state.
In 2000 Niemela and coworkers [35–37, 55, 56] have performed experiments using
cryogenic helium in an aspect ratio Γ = 0.5 sample. The data of these experiments
reached Ra numbers up to Ra≈ 1017. However, in these experimental measurements
no strong heat transport enhancement, as it was found in the experiments of Cha-
vanne et al. [38, 53, 54], was observed. Both these experiments have been performed
with liquid helium near its critical point, and therefore the Pr number increases sig-
nificantly when the Ra number is increased.

For more moderate Ra up to 2× 1014 the DNS by Amati et al. [44] in a three
dimensional cylindrical cell of aspect ratio 1/2 with Pr = 0.7 showed a higher Nus-
selt number than measured in experiments, see figure 1.2. In order to explain this
discrepancy it was suggested by Verzicco and Sreenivasan [57] that the experimental
conditions are closer to fixed heat flux conditions than fixed temperature boundary
conditions of the horizontal plates. However, the 2D simulations by Johnston and
Doering [58] showed that the Nusselt number obtained in simulations with constant
temperature and constant heat flux boundary conditions are identical for Ra& 5×106.

The work by Chavanne et al. [38, 53, 54] and Niemela et al. [35–37, 55, 56] ini-
tiated the work of Ahlers and coworkers in Göttingen in 2009. They used a RB cell
with a height over 2 meters to perform measurements around room temperature with
high-pressurized gases in order to keep the Pr number constant over a wide range of
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Ra numbers [59]. The first results of Ahlers et al. [39–41] were in general agreement
with the Niemela et al. data .[35–37, 55, 56], see figure 1.2. However, further mea-
surements [42] revealed the presence of different turbulent states for very high Ra,
which seem to be triggered by the temperature outside the convection apparatus.

Similar transitions between different turbulent states in this high Ra number regime
are reported by Roche et al. [43, 60–62]. For Ra & 1012 and Γ = 0.23 they found two
different scaling branches for Nu(Ra). For lower fluid density an upper, less steep
branch, and for higher density a lower, but steeper branch is found. In addition, they
found that the Ra number at which the transition takes place depends on the aspect
ratio, namely the smaller the aspect ratio, the larger the Ra number for which the tran-
sition is observed. Subsequently, the presence of these different turbulent states was
explained by Grossmann and Lohse [63] by extending the GL-theory to the very large
Ra number regime, where the kinetic boundary layer becomes turbulent. However, at
the moment it remains unclear why a different turbulent state would be triggered by
the fluid density or the temperature outside the cell.

It thus turns out that the practical realization of this high Ra number regime in
RB convection comes with great technical difficulties, like the use of cryogenic gases
close to the critical point, pressurized fluids, or simply very large systems. It has
been argued that the disagreements between the experiments could be caused by the
variations of the Pr number in some experiments, the use of constant temperature
or a constant heat flux condition at the bottom plate, the finite conductivity of the
horizontal plates and sidewall, non-Oberbeck-Boussinesq effects, i.e. the dependence
of the fluid properties on the temperature, and even wall roughness and temperature
conditions outside the cell might play a role [42].

From the above discussion it becomes clear that there are several open questions
on high Ra number thermal convection. The main questions that will be addressed in
part I of this thesis are:

• What effect causes the differences that are observed between the experimental
and numerical results shown in figure 1.2?
• What numerical resolution should be used in the bulk and the boundary layers

to assure that the flow in a DNS is properly resolved?
• What effect causes the differences observed between the several experiments

for Ra & 1011?
• How can one determine from experimental sidewall temperature measurements

whether a large scale circulation is present?

In chapter 2 and 3 we present results of DNSs, in which the Boussinesq approx-
imation is unconditionally valid, the walls are perfectly smooth, and the boundary
conditions are exactly defined. These simulations thus provide a good reference case
for the intended model problem and are compared with available experimental data.
In chapter 2 we show that in RB simulations it must be assured that the mesh size is
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of the same order (if possibly equal or smaller) than the smallest scales in the flow,
to obtain an accurate measurement of the heat transport. In chapter 2 we showed that
the difference between experiments and simulations shown in figure 1.2 was caused
by insufficient numerical resolution. Based on the experience gained in the simula-
tions presented here we formulate general resolution criteria that need to be satisfied
in the bulk. In addition, we derive lower bound estimates for the number of compu-
tational nodes that should be placed inside the kinetic and thermal boundary layers
close to the horizontal plates (chapter 4). These results have been used to check the
resolution of the simulations presented in part II and III of this thesis. In chapter 3 we
investigate the influence of the Pr number on the heat transport and we look into the
effect of changing the constant temperature boundary condition at the bottom plate
into a constant heat flux condition. Finally, in chapter 5 we use the data accessibil-
ity provided by DNSs to demonstrate a new method that can be used to determine
whether a large scale circulation is present. This method can be applied to available
experimental data for high Ra number and rotating RB convection, as we will show
in chapter 12, to determine whether an LSC is present.

1.3.2 Part II - Rotating Rayleigh-Bénard convection

In part II of this thesis we study the influence of rotation on heat transport. For this
we will analyze rotating RB, i.e. a cylindrical RB sample rotated around its symmetry
axis. The corresponding system of equations is

∂u
∂ t

+u ·∇u+2ΩΩΩ×u = −∇p+ν∇
2u+βgθ ẑ, (1.18)

∂θ

∂ t
+u ·∇θ = κ∇

2
θ , (1.19)

where ΩΩΩ is the rotation rate of the system around the center axis, pointing against
gravity, ΩΩΩ = Ωẑ. The rotation rate of the system is indicated by the Rossby number

Ro =
√

βg∆/L/(2Ω), (1.20)

which indicates the ratio between the buoyancy and Coriolis force. Note that the Ro
number is an inverse rotation rate. Therefore in part of this thesis the rotation rate is
expressed by 1/Ro, which is proportional to Ω.

Nusselt number measurements in rotating Rayleigh-Bénard convection

The addition of rotation complicates experimental investigations on RB convection.
Nevertheless, there have been several experiments on the influence of rotation on
thermal convection. Early linear stability analysis, see e.g. Chandrasekhar [1], re-
vealed that rotation has a stabilizing effect due to which the onset of heat transfer
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is delayed. This can be understood from the thermal wind balance, see appendix
A, which implies that convective heat transport parallel to the rotation axis is sup-
pressed. Experimental investigations concerning the onset of convective heat transfer
and the pattern formation in cylindrical cells just above the onset under the influ-
ence of rotation have been performed by many authors, see e.g. [64–68]. Recently,
Lopez, Rubio, Marques and coworkers. see e.g. [69–71], have carefully investigated
the onset of thermal convection under the influence of rotation in DNSs.

Since the experiments by Rossby in 1969 [72], it is known that rotation can also
enhance the heat transport. Rossby found that, when water is used as the convective
fluid, the heat transport first increases with respect to the non-rotating value when the
rotation rate is increased. He measured an increase of about 10%. This increase is
counterintuitive as the stability analysis of Chandrasekhar [1] has shown that rotation
delays the onset to convection and from this one would expect that the heat transport
decreases. The mechanism responsible for this heat transport enhancement is Ekman
pumping [72–76], i.e. due to the rotation, rising or falling plumes of hot or cold
fluid are stretched into vertically-aligned-vortices that suck fluid out of the thermal
boundary layers adjacent to the bottom and top plates. This process contributes to
the vertical heat flux, see appendix A for details. For stronger rotation Rossby found,
as expected, a strong heat transport reduction, due to the suppression of the vertical
velocity fluctuations by the rotation. This means that a typical measurement of the
heat transport enhancement as function of the rotation rate looks like the one shown
in figure 1.3. After Rossby many experiments, e.g. [68, 74–80], have confirmed this
general picture. The group of Niemela [81] has performed high Ra number experi-
ments, in which no heat transport enhancement due to Ekman pumping is observed.
As we will show in chapter 6 this is an effect of the high Ra number that is used in
these experiments. In figure 11.1 (page 139) we give an overview of the parameter
ranges that are covered in the various experimental studies.

Rotating RB experiments are more difficult than non-rotating RB experiments as
a well controlled rotating table has to be available. In contrast, in numerical simula-
tions it is sufficient to include the one simple term in the Boussinesq approximation
in a non-rotating RB code to include rotation. Nevertheless, there have been only
a limited number of numerical studies on rotating thermal convection. In most of
these numerical simulations a horizontally unbounded domain is simulated. These
simulations are relevant to understand large convective systems that are influenced
by rotation, such as the atmosphere and solar convection. In 1991 Raasch & Etling
[82] used a large-eddy simulation to simulate the atmospheric boundary layer. Julien
and coworkers [73, 77, 83, 84], Kunnen et al. [85, 86] and King et al. [76] used
DNSs at several Ra and Ro numbers to study the heat transport and the resulting flow
patterns under the influence of rotation. Sprague et al. [87] numerically solved an
asymptotically reduced set of equations valid in the limit of strong rotation. Finally,
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Figure 1.3: The scaled heat transfer Nu(1/Ro)/Nu(0) as function of 1/Ro on a logarithmic scale.
Experimental and numerical data for Ra = 2.73×108 and Pr = 6.26 are indicated by red dots and open
squares, respectively. Data taken from chapter 6 and 8 and are called run E2 in Zhong & Ahlers [80].
See also chapter 12.

Schmitz and Tilgner [88, 89] performed horizontally periodic simulations with no-
slip and stress-free boundary conditions at the horizontal plates. They show that heat
transport enhancement under the influence of rotation is only found when a no-slip
boundary condition at the horizontal plates is used.

Oresta et al. [90] and Kunnen et al. [75, 91, 92] have studied turbulent rotating
convection in a cylinder. They focus on the influence of rotation on the heat transport
and the corresponding changes in the flow structure. In addition, it allowed Kunnen
et al. [75, 91, 92] to make direct comparisons between experiments and simulations.
An indication of the parameter regime that is covered by several numerical studies
can be found in the phase diagram shown in figure 11.1 (page 139).

Different turbulent states

When the heat transport enhancement as function of the rotation rate is considered,
a typical division in three regimes, see figure 1.3, is observed. Namely regime I
(weak rotation), where no heat transport enhancement is observed, regime II (mod-
erate rotation), where a strong heat transport enhancement is found, and regime III
(strong rotation), where the heat transport starts to decrease [91, 93]. This division is
based on several experimental efforts. The experiments of Boubnov & Golitsyn [93],
Zhong, Ecke & Steinberg [68], and Sakai [94] first showed with flow visualization
experiments that there is a typical ordering of vertically-aligned- vortices under the
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Figure 1.4: Visualization, based on a DNS, of the temperature field in the horizontal mid-plane of a
cylindrical convection cell. The red and blue areas indicate warm and cold fluid, respectively. The
left image is at a slow rotation rate (1/Ro = 0.0046) below the transition where the warm upflow (red)
and cold downflow (blue) reveal the existence of a single convection roll superimposed upon turbulent
fluctuations. The right image is at a somewhat larger rotation rate (1/Ro= 0.6) and above the transition,
where vertically-aligned vortices cause disorder on a smaller length scale.

influence of rotation, see figure 1.4 for a visualization based on numerical simulations
performed in this thesis. A three dimensional visualization of the vortices is made by
Kunnen et al. [92]. The first local velocity (and temperature) measurements in the
flow have been reported by Boubnov & Golitsyn [93] and Fernando et al. [95]. In
both experiments the flow was analyzed using particle-streak photography. Vorobieff
& Ecke [74, 96] used digital cameras to perform particle image velocimetry (PIV)
measurements to study the flow with higher spatial and temporal resolutions. Special
attention was given to obtain statistics on the vortices in the strongly rotating regime,
see figure 1.4 and appendix B. In later experiments by Kunnen et al. [75, 91, 97]
these experiments were extended by the application of stereoscopic PIV (SPIV): In
this technique two cameras are used to obtain a stereoscopic view, which allows for a
reconstruction of the out-of-plane velocity. This made new experimental data avail-
able, for example on the correlation between the vertical velocity and the vertical
vorticity.

It is also well known that without rotation the LSC is the dominant flow structure,
see e.g. [20, 98, 99] and figure 1.4. This has motivated Hart, Kittelman & Ohlsen
[100], Kunnen et al. [75], and Ahlers and coworkers [80, 98] to study the influence
of weak rotation on the LSC. In these investigations it was found that the LSC has a
weak precession under the influence of rotation. In addition, it was shown by Zhong
& Ahlers [80] that, although the Nusselt number is unchanged in regime I, there are
various properties of the LSC that are changing when the rotation rate is increased in
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regime I. Based on an experimental and numerical study on the properties of the LSC
Kunnen et al. [75] showed that the LSC disappears when a strong enough rotation is
applied.

There have also been analytic modeling efforts by Portegies et al. [101] and
Grooms et al. [102] to understand the heat transport in the rotating regime. In these
models only the heat transfer in the vertically-aligned-vortices is considered as most
heat transport in the strong rotating regime takes place inside these vortices.

From the above discussion it becomes clear that there are several open questions
on rotating RB convection. The main questions that will be addressed in part II of
this thesis are:

• How does the effect of Ekman pumping depend on Ra and Pr?
• What happens at the onset of heat transport enhancement?
• What is the influence of the aspect ratio in rotating RB convection?
• Can the Grossmann-Lohse model be extended in order to describe the heat

transfer in rotating RB convection?
• How can changes in the flow structure due to rotation be detected from experi-

mental sidewall temperature measurements?

In part II of this thesis we present experimental and numerical data on the heat
transfer as function of the Ra, Ro, and Pr number and for different aspect ratios. The
experiments have been performed in the group of Guenter Ahlers in Santa Barbara,
see chapter 6 for a description of the setup, and in Eindhoven, see chapter 10 for a
description of the setup, which is based on the Santa Barbara design. In chapter 6
we show that the effect of Ekman pumping, and thus the observed heat transport en-
hancement, strongly depends on the Ra and Pr number. The Pr number dependence
will be discussed in more detail in chapter 7. In chapter 8 we show that there is a
sharp transition between a regime where the LSC is dominant at weak rotation, to a
regime that is dominated by vertically-aligned-vortices at stronger rotation. Subse-
quently, we will show in chapter 9 that the rotation rate at the onset of heat transport
enhancement increases when the aspect ratio of the sample is decreased. Then we
will study the influence of the aspect ratio for stronger rotation rates in chapter 10
to show that the heat transport in the strong rotating regime does not depend on the
aspect ratio. After this we will discuss the behavior of the boundary layers under the
influence of rotation in chapter 11. The results from this analysis will be used in a
model that extends the GL theory to the rotating case to account for the smooth onset
of heat transport enhancement that is found at relatively low Ra numbers. We empha-
size that this model cannot be used to explain the onset of heat transport enhancement
for larger Ra, which is discussed in chapter 9. Finally, in chapter 12 we will discuss,
based on the results of experiments and numerical simulations, how the different flow
regimes in rotating RB convection can be recognized from the azimuthal temperature
(or vertical velocity) profiles close to the sidewall. For this analysis we will use some
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of the methods introduced in chapter 5 to determine whether the LSC is present. In
addition, we will show that a weak secondary circulation is created due to rotation,
which takes place in the Ekman boundary layer, close to the horizontal plates, and in
the Stewartson boundary layers, close to the sidewall.

1.3.3 Part III - 2D Rayleigh-Bénard convection

The total amount of CPU time that is used in the simulations presented in this thesis
well surpasses 10 million hours. However, unfortunately, CPU time is not available
in unlimited amounts. Therefore we have also performed simulations on 2D RB
convection. An obvious advantage of these 2D computations is that they are much
cheaper than the three dimensional ones. However, one may wonder whether the
dynamics of 3D RB convection are sufficiently captured in 2D RB simulations.

This question has been addressed by Schmalzl et al. [103] and the general con-
clusion was that various properties observed in 3D RB convection are well reflected
in 2D simulations. Over the years 2D simulations have been used to investigate a
number of aspects. Sugiyama et al. [104–106] used 2D simulations to verify and
study the non-Oberbeck Boussinesq effects observed in 3D experiments of Ahlers et
al. [105]. Johnston & Doering [58] used periodic 2D simulations to show that for
high enough Ra numbers the heat transport in simulations with constant temperature
condition and constant heat flux condition at the horizontal plates becomes equal. We
note that we have shown the same for 3D DNS in cylindrical domains in chapter 3.

It thus becomes clear that 2D simulations can be used to better understand some
aspects of 3D RB convection. The main questions that will be addressed in part III
of this thesis are:

• Do the boundary layer profiles in RB convection agree with the prediction of
the Prandtl-Blasius theory?
• What mechanism is responsible for the spontaneous flow reversals observed in

2D RB convection?

In chapter 13 we analyze experimental and numerical results on (quasi) 2D RB
convection to characterize the boundary layer profiles. Here we find good agreement
between the theoretical Prandtl-Blasius profiles and the numerically and experimen-
tally obtained ones. This further confirms one of the key assumptions of the GL-
theory, namely that the boundary layers behave in laminar way up to a certain Ra
number. In chapter 14 we analyze the random flow reversals that are observed in
(quasi) 2D experiments and simulations. Here we again find a perfect agreement be-
tween experiments and simulations. We find that the reversals are only observed in a
certain parameter regime. The reversals are caused by a geometry effects as the flow
rolls that build up in the diagonally opposing corners of the cell trigger the reversals.
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1.4 Collaboration

In this thesis we used a combination of experimental, numerical and theoretical tech-
niques to get a better understanding of RB convection. This was only possible due to
the collaboration with several groups around the world.In particular, we would like
to mention that Dr. Kazuyasu Sugiyama and Prof. Roberto Verzicco provided the 2D
and 3D numerical codes for the simulations presented.

Some of the experiments presented in this thesis have been performed by our-
selves in Eindhoven, while others have been performed elsewhere. In particular,
many rotating RB experiments have been performed by Dr. Jin-Qiang Zhong, Dr.
Stephan Weiss and Prof. Guenter Ahlers in Santa Barbara. The 2D experiments in
part III are performed in the group of Prof. Ke-Qing Xia in Hong Kong. Dr. Quan
Zhou and Prof. Ke-Qing Xia contributed to the analysis of the boundary layer profiles
in part III.

Others have contributed to the more theoretical work presented. Here we men-
tion the contributions of Dr. Olga Shiskina on the analysis that shows the minimum
number of computational nodes that should be placed inside the boundary layers, the
work of Prof. GertJan van Heijst on the analysis of the Stewartson boundary layers in
rotating RB convection, and the contribution of Prof. Siegfried Grossmann on several
chapters.
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High Rayleigh number thermal
convection
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2
Radial boundary layer structure and Nusselt

number in Rayleigh-Bénard ∗

Results from direct numerical simulations for three dimensional Rayleigh-Bénard
convection in a cylindrical cell of aspect ratio 1/2 and Pr = 0.7 are presented. They
span five decades of Rayleigh from 2× 106 to 2× 1011. The results are in good
agreement with the experimental data by Niemela et al., Nature, 404, 837 (2000).
Previous direct numerical simulations results from Amati et al., Phys. Fluids, 17,
121701 (2005) showed a heat transfer that was up to 30% higher than the experi-
mental values. The simulations presented in this chapter are performed with a much
higher resolution to properly resolve the plume dynamics. We find that in underre-
solved simulations the hot (cold) plumes travel further from the bottom (top) plate
than in the better resolved ones, due to insufficient thermal dissipation mainly close
to the sidewall (where the grid cells are largest) and therefore the Nusselt number
in underresolved simulations is overestimated. Furthermore, we compare the best
resolved thermal boundary layer profile with the Prandtl-Blasius profile. We find that
the boundary layer profile is closer to the Prandtl-Blasius profile at the cylinder axis
than close to the sidewall, due to rising plumes close to the sidewall.

∗Based on: R.J.A.M. Stevens, R. Verzicco, and D. Lohse, Radial boundary layer structure and
Nusselt number in Rayleigh-Bénard convection, J. Fluid Mech. 643, 495-507 (2010).
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2.1 Introduction

Previous direct numerical simulations up to Rayleigh 2× 1014 by Amati et al. [44]
in a three dimensional cylindrical cell of aspect ratio 1/2 with Pr = 0.7 showed a
higher Nusselt Nu number than measured in experiments, see figure 2.1. In order to
explain this discrepancy it was suggested by Verzicco & Sreenivasan [57] that the ex-
perimental conditions are closer to fixed heat flux conditions than fixed temperature
boundary conditions of the horizontal plates. However, recent two dimensional sim-
ulations by Johnston & Doering [58] showed that the Nusselt number Nu obtained
in simulations with constant temperature and constant heat flux boundary conditions
are identical when Ra & 5× 106. In this chapter we show that the Nusselt number
obtained in the three dimensional simulations with constant temperature boundary
conditions is in good agreement with the experimental data, see figure 2.1, when the
resolution is sufficiently high.

2.2 Numerical method and results on the Nusselt number

We numerically solved the three-dimensional Navier-Stokes equations within the
Boussinesq approximation,

Du
Dt

= −∇P+

(
Pr
Ra

)1/2

∇
2u+θ ẑ, (2.1)

Dθ

Dt
=

1
(PrRa)1/2 ∇

2
θ , (2.2)

with ∇ ·u = 0. Here ẑ is the unit vector pointing in the opposite direction to gravity,
D/Dt = ∂t +u ·∇ the material derivative, u the velocity vector with no-slip boundary
conditions at all walls, and θ the non-dimensional temperature, 0 ≤ θ ≤ 1. The
equations have been made non-dimensional by using the length L, the temperature ∆,
and the free-fall velocity U =

√
βg∆L. The numerical scheme is described in detail

in Refs. [107–109].
The most important requirement for conducting DNS is to resolve all the rele-

vant scales of the flow, i.e. the Kolmogorov length η and the Batchelor length ηT .
According to Grötzbach [110], the maximum wave number to be recorded by the
grid is kmax = π/h, where h=(∆x∆y∆z)1/3 is the mean grid width. This wave num-
ber must be greater than 1/η , where η = (ν3/εu)

1/4, and greater than 1/ηT , where
ηT = (κ3/εu)

1/4. According to Grötzbach [110] this leads to the following restric-
tions on the mean grid widths:

h≤ πη = π(ν3/εu)
1/4 for Pr ≤ 1 , (2.3)

h≤ πηT = π(κ3/εu)
1/4 for Pr ≥ 1 , (2.4)
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Figure 2.1: (a) compensated Nusselt number vs the Rayleigh number for Pr = 0.7. Purple stars are
experimental data from Niemela et al. [35] and the green squares are from Chavanne et al. [38]. The
DNS results from Verzicco & Camussi [109] and Amati et al. [44] are indicated in red and the present
DNS results with the highest resolution are indicated by the black dots. When the vertical errorbar is
not visible the error is smaller than the dot size. The results of the underresolved simulations of this
study are indicated by the blue dots. (b) sketch of the grid geometry. The cells close to the sidewall are
largest and therefore this region is least resolved.

However the simulations presented in this chapter show that it is necessary to properly
resolve the flow in all directions of the flow. This means that the definition for h
should read h = max(∆x,∆y,∆z). Note that this adapted criterion requires a higher
resolution in the horizontal plane, especially in the BLs close to the horizontal plates.
This high resolution in the horizontal direction is necessary to properly resolve the
plume dynamics in the BL as the (thermal) gradients in this region are large in all
directions of the flow and not only in the vertical direction. The simulations presented
in this chapter will show that it is crucial to properly resolve the plume dynamics to
obtain accurate results for the Nusselt number.

When the vertical dissipation profile is assumed to be constant and is approxi-
mated by equating it to the production term due to buoyancy forces in the kinetic
energy equation one obtains the following relations [110],

h≤ πη = πL
(

Pr2

RaNu

)1/4

for Pr ≤ 1 , (2.5)

h≤ πηT = πL
(

1
RaPrNu

)1/4

for Pr ≥ 1 , (2.6)

which are widely used in the literature. However one has to realize that RB convec-
tion is anisotropic and that the dissipation rates strongly fluctuate in time and space.
It is widely know that the dissipation rates peak close to the walls and therefore there
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the relevant length scales are smallest. For DNS simulations in a cylindrical geom-
etry this means that one has to take care that the azimuthal resolution is sufficient,
because the grid spacing ∆φ is largest close to the sidewall while the length scale that
has to be resolved in that region is smallest. Furthermore, one also has to realize that
the dissipation rates strongly fluctuate in time and thus also the relevant length scales
that have to be resolved [111]. This means that when the relevant length scales in
the simulation are determined from azimuthally and time averaged dissipation rate,
the necessary resolution for a fully resolved simulation may locally or temporarily be
even larger. How strong this effect is depends on the strength of the intermittency and
therefore on the system parameters (Ra,Pr,Γ). Although the relations (2.5) and (2.6)
can be used to get an estimate of the required resolution, one has to realize that the re-
sult underestimates the resolution that is required to have a fully resolved simulation,
because the fluctuations in time and space are not incorporated in these relations

All simulations in this chapter are for Pr = 0.7 and therefore η is the smallest
length scale in the flow. We simulated each Ra number on at least three differ-
ent grids to test the influence of the grid scales. In table 2.1 the largest grid scale
`max =max(∆r,ΓL/2∆φ ,∆z) is compared to the Kolmogorov scale η for each simula-
tion. We do this in two different ways, namely by looking at the global criterion (2.5),
assuming an uniform distribution of the dissipation rates, see column (`max,g/η). Fur-
thermore, we also estimated this ratio by looking at the time averaged dissipation
rates as function of the position (`max,p/η). Note that the relation between `max,p and
`max,g shows that the global criterion indeed underestimates the required resolution
for a fully resolved DNS simulation. The grid density near the plates has been en-
hanced to keep a sufficient number of nodes in the thermal BL where the vertical
temperature gradients are very high, see the column ”NBL” in table 2.1. According
to Grötzbach [110] three points in the thermal BL should be sufficient. In the papers
by Verzicco and Camussi [109] and Amati et al. [44] it was already noted that more
than three grid points in the thermal BL are required. Indeed, the results clearly show
that more grid points in the thermal BL are required to have a fully resolved simula-
tion. In chapter 4 we will derive a lower bound estimate for the number of gridpoints
that should be placed inside the BLs. Here we note that the strength of the plumes
decreases slowly when the plumes travel further away from the plates and therefore
the grid spacing from the plates to the bulk has to be increased gradually to prevent
that the plumes become underresolved just above the thermal BL.
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For all simulations up to Ra = 2×1010 on the 129×97×385 grid we simulated
the flow for at least 200 dimensionless time units (2 dimensional time units equal
1 turnover time) to make sure to have reached the statistically stationary state and
all transient effects are washed out, before we then started to collect data for an
additional 400 dimensionless time units (and some cases even for 3000 dimensionless
time units) so that the statistical convergence could be verified. In simulations where
the flow field obtained at a lower Ra (or a new random flow field) is used as an initial
condition, we observe a small overshoot in Nu, before it settles to its statistically
stationary value. The long initialization runs we used prevent that this influences our
results. This is double checked by the convergence of the different methods we use to
calculate Nu. Since most simulations are started from an interpolated field obtained
at a lower Ra, we recomputed Nu for Ra = 2×109 on the 193×65×257 grid with a
new flow field to rule out the effect of hysteresis on the obtained Nusselt results. The
result is shown in italics in table 2.1 and is in excellent agreement with the original
result.

For the six most demanding simulations, i.e. the bottom five cases in table 2.1
and the simulation for Ra = 2× 109 on the 513× 129× 513 grid, the criteria for
time averaging had to be relaxed due to the limited CPU time available. Therefore
we averaged these cases for 100 dimensionless time units (300 time units for the
simulation at Ra = 2× 1010 on the 385× 257× 1025 grid, 200 dimensionless time
units for for Ra = 2× 109 on the 513× 129× 513 grid, and 40 dimensionless time
units for Ra = 2× 1011 on the 1081× 351× 1301 grid). The simulations at Ra =
2×1010 have completely different initial conditions, i.e. different flow fields obtained
at lower Ra are used as initial condition. Nonetheless, we observe good agreement.

We calculate Nu as volume average and also by using the temperature gradients
at the bottom and top plate. The volume average is calculated from the definition
of the Nusselt number Nu = (〈uzθ〉A − κ∂3〈θ〉A)/ κ∆L−1 [108]. In addition, we
average over the entire volume and time. The averages of the three methods, i.e. the
volume average and the averages based on the temperature gradients at the bottom
and top plate. The value Nu in table 2.1 gives the average value of these three for the
simulation length of the actual simulation, normally 400 dimensionless time units.
We also determined Nu over the last half of our simulations, normally the last 200
dimensionless time units, see the column ”Nuh” in table 2.1. These values are within
1% of the value determined over the whole simulation, showing that our results are
well converged. The maximum difference in Nu obtained from the three methods,
i.e. volume average and using the temperature gradients at the plates, is given in the
column ”max-diff” in table 2.1.

Figure 2.1 shows that the DNS data converge to the experimental data when the
resolution is increased. The results indeed show that a very high resolution is re-
quired to obtain converging results for the Nusselt number. The error bars in figure
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2.1 indicate the maximum of the following three quantities. 1) The maximum differ-
ence between the three methods to determine the Nu. 2) The difference between Nu
determined over whole simulation length and Nu determined over the last half of the
simulation. 3) When the error bar based on criterion 1 and 2 is smaller than 1% after
averaging over 400 dimensionless time units the error is assumed to be 1%. When the
data is averaged over 100 dimensionless time units we take a minimal error of 3%.
For 2×106 and 2×107 we also determined the variation in Nu at various distances
from the horizontal plates [112] and found that the differences are smaller than 0.2%.
We note that Nu fluctuates more in time than in space (after sufficient spatial averag-
ing). This check also shows that the Nusselt number results in our simulation are well
converged. The difference in Nu we get from independent simulations is normally
well within these error margins when exactly the same grid is used, except for some
cases at Ra = 2×106.

2.3 Dissipation rates and PDFs of temperature distribution

Another way to calculate Nu is to look at the two exact global relations for the volume
averaged kinetic and thermal energy dissipation rates 〈εu〉= ν3(Nu−1)RaPr−2/L4,
and 〈εθ 〉 = κ∆2Nu/L2, respectively [113]. We have calculated the azimuthally and
time averaged energy dissipation rate εu(

−→x ) = ν |∇u|2 and the thermal dissipation
rate εθ (

−→x ) = κ|∇θ |2. In addition we look at the quantity ε”
u(
−→x ) := u ·∇2u. The

volume averaged value of ε”
u is the same as the volume averaged kinetic energy dissi-

pation rate εu (although it differs locally), which can easily be derived using Gauss’s
theorem [20]. Figure 2.2 compares the difference between the dissipation rates ob-
tained in the fully resolved and the underresolved simulations and reveals a higher
thermal dissipation rate for the fully resolved simulations as it is calculated from the
(temperature) gradients. In the underresolved simulations the gradients are smeared
out and therefore εu and εθ are underestimated. To check the resolution, we calcu-
lated εu and εθ from the respective gradients and compared it with the values obtained
from above global exact relations. Table 2.1 shows that for εu the relation is basically
satisfied for all simulations, whereas for εθ the difference can be considerable. For
the higher Ra numbers the temperature field is underresolved, because of the line
structure of the plumes very close to the horizontal plates and close to the sidewalls.
Since the thermal dissipation rate in these regions is much higher than the kinetic dis-
sipation rate this effect is much more pronounced in the convergence of the thermal
dissipation rate than in the convergence of the kinetic dissipation rate. We note that
the value for the Nusselt number seems to be converged earlier than the convergence
of the dissipation rates. Testing above exact relations seems to be the best way to
verify the grid resolution. For 2× 106 and 2× 107 the kinetic dissipation rate is not
converged because we can not properly resolve the kinetic dissipation rate close to
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Figure 2.3: a) A sketch showing the locations (crosses) of the azimuthally averaged temperature PDFs,
shown in figure 2.3 b, c, and d, for Ra = 2× 108 obtained on different grids. The radial position
is 0.2342L for the underresolved (97×49×193) and 0.2314L for the better resolved (193×65×257)
simulations. The temperature PDF for the better resolved simulations averaged over 3000 dimensionless
time units is indicated in black. The green line indicates the result using half of the time series. The
temperature PDF averaged over 3000 dimensionless time units for the underresolved simulations is
indicated in blue, and the red indicates the result using half of the time series. b) Temperature PDF at
mid height. c) Temperature PDF at the distance λ sl

θ
from the bottom plate. d) Temperature PDF at the

distance λ sl
θ

from the top plate.

the cylinder axis due to the metric factors 1/r, 1/r2,... that amplify the numerical
errors in the squared gradients this region. At higher Ra the fraction of the kinetic
dissipation that is in this region is smaller and therefore the convergence is better.

The vertical heat flux concentrates in the plume-dominated sidewall region where
the vertical velocity reaches its maximum [114]. Therefore it is very important to
properly resolve the region close to the sidewall. However, figure 2.2 reveals that in
the underresolved simulations the region close to the sidewall is least resolved (red
areas in the plot where the thermal dissipation rates are compared (right plot)), as
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Figure 2.4: Flatness of the temperature PDF at mid height for Ra = 2×108 for the underresolved (red
(upper lines), 97×49×193) and the better resolved simulations (black (lower lines), 193×65×257).
The solid lines indicate the result after averaging over 3000 dimensionless time units and the dashed
lines the result after averaging over 1600 dimensionless time units. Both simulations are started from
the same initial field obtained at a lower Ra and the data collecting is started when each simulation has
reached the statistically stationary state.

there the finite volumes are largest, due to the cylindrical geometry of the grid (see
figure 2.1b). When the resolution is insufficient close to the sidewall, the plumes in
this region, which are important for the heat transfer, are not properly resolved and
not sufficiently dissipated. Therefore too much heat is transported across the cell,
leading to an overestimation of Nu in the underresolved simulations. Furthermore,
figure 2.2 shows that the thermal dissipation rate in the underresolved simulations is
overestimated in the central region. This is due to the flow organization at higher
Ra, see figure 8 of Ref. [109], where it is shown that there is a double convection
roll for Ra = 2× 109. Because the plumes close to the sidewall are insufficiently
dissipated in the underresolved simulations the plumes that will reach the central
region of the cell will be stronger in the underresolved simulations than in the better
resolved ones. This leads to a higher dissipation in the central region in underresolved
simulations with respect to better resolved simulations. Supplementary movies [115]
reveal the dynamics of the system for the different grid resolutions. Movie 2.1 shows
the temperature field in horizontal cross sections close to bottom plate and movie 2.2
at mid height. Note that the coarseness of the underresolving grids does not capture
all the characteristics of the flow observed in the high resolution simulation.

To further investigate the influence of the grid resolution, we calculated azimuthally
averaged PDFs, see also Refs. [112, 116–119], of the temperature averaged over
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Figure 2.5: Azimuthally averaged temperature profiles obtained from the simulations at different grids.
a) Ra = 2× 108, for the grids 97× 49× 193 (red), 193× 65× 257 (blue), 257× 97× 385 (black) and
b) Ra = 2×109 for the grids 129×65×257 (red), 193×65×257 (blue), 385×97×385 (black). The
solid lines show the temperature profile at the cylinder axis (r = 0) (the diamonds indicate the data
points obtained from the simulation) and the dashed lines at the radial position 0.225L. The green line
indicates the PB profile matched to the temperature gradient at the cylinder axis (r = 0) of the high
resolution simulation. The insets show the temperature profile from the highest resolution data over a
larger axial range. Here the solid line indicates the profile at the axis and the dashed line the temperature
profile at the radial position 0.225L.

3000 dimensionless time units for Ra = 2× 108, comparing the underresolved case
(97×49×193) with the fully resolved one (193×65×257). Figure 2.3 shows that
the temperature PDFs at mid height and at a distance λ sl

θ
(thermal BL based on the

slope) from the plates have longer tails in the underresolved simulation than in the
better resolved one. Again the reason lies in the rising (falling) plumes from the
bottom (top) plate which are not properly dissipated in the underresolved simula-
tions and therefore travel further from the plates. The comparison with the PDF
obtained using half of the time series reveals that the differences in the PDFs are
not due to a lack of averaging, but due to insufficient grid resolutions. We note that
we observe similar differences at other radial positions, only the averaging around
the cylinder axis (r = 0) leads to not fully converged results due to the cylindrical
geometry. In figure 2.4 we show the effect of the grid resolution on the flatness
F = 〈(θ −〈θ〉)4〉/〈(θ −〈θ〉)2〉2 obtained at mid height for the better resolved and
underresolved simulations. Comparison between the solid and dashed lines show that
the data are converged close to the sidewall where the statistics is best due to geo-
metric reason. Comparison between black (well resolved) and red (underresolved)
reveals that the insufficiently dissipated plumes mainly close to the sidewall leads to
too large flatnesses in the underresolved simulations.
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Figure 2.6: Azimuthally averaged BL thicknesses as function of the radial position for Ra = 2× 109.
Figure 2.6a and b show data from the high resolution simulation (385× 97× 385). a) The solid line
indicates λ sl

θ
and the dashed lines λ rms

θ
, where red and blue indicate the bottom and top plate, respec-

tively. b) The solid line indicates λ
ε”

u
u and the dashed line λ rms

u based on the azimuthal velocity (colors
as in figure 2.6a). c) Now the colors indicate the different grid resolutions: Red (129×65×257), blue
(193× 65× 257), and black (385× 97× 385). The solid lines indicate λ sl

θ
and the dashed lines λ rms

θ
.

The data for the bottom and top BL are averaged for clarity. Note that the BL is thicker (especially
close to the sidewall) in the higher resolution simulations, which is in agreement with the observed Nu

trend. d) The solid lines indicate λ
ε”

u
u and the dashed lines λ rms

u based on the azimuthal velocity for the
different grid resolutions (colors as in figure 2.6c).

2.4 Boundary layers

Although the bulk is turbulent, scalingwise the BLs still behave in a laminar way
due to the small BL Reynolds number [20]. In figure 2.5 we compare the thermal
BL profile obtained from the simulations with the Prandtl-Blasius (PB) profile, as
done by Sugiyama et al. [106] for 2D RB simulations. The temperature gradient of
the PB profile is matched to the temperature gradient obtained in the high resolution
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simulation. The temperature profile obtained in the simulations best matches the PB
profile around the cylinder axis (r = 0). Close to the sidewall the agreement is worse
due to the rising (falling) plumes in this region. We therefore compare the difference
between the PB profile and the result obtained from the simulation for different Ra.
We determine, at the cylinder axis, (θsim-θPB)/(∆-θPB) for the bottom BL and (θPB-
θsim)/(θPB) for the top BL. Here θsim is the mean temperature at a distance λ sl

θ
from

the plate and θPB the temperature according to PB at this height, after having matched
the gradient at the plate to the simulation data. If the simulation exactly matched PB
(e.g. for very small Ra), this expression would be zero. In contrast 0.103, (0.130,
0.149) is obtained for Ra = 2×108, (2×109, 2×1010). As expected, the expression
is smaller for the lower Ra numbers. We perform the same procedure for the results
of chapter 6 at Ra = 1×108 with Γ = 1 and now different Pr. For Pr = 0.7, Pr = 6.4,
and Pr = 20 we now obtain 0.099, 0.040, and 0.033, respectively. Now the expression
is closest to zero at the highest Pr, where the Re number of the flow is lowest and
thus the flow better fulfills the assumptions of the PB approximation. The agreement
with the PB profile becomes less when the distance from the plate is larger due to
the rising (falling) plumes in this region. This phenomenon is discussed in detail by
Sugiyama et al. [106].

Figure 2.6 shows the radial dependence of λ sl
θ

, λ rms
θ

(thermal BL thickness based
on maximum rms value). First we determined the kinetic BL thickness by looking
at λ rms

u (kinetic BL thickness based on maximum azimuthal rms velocity). Although
this definition is widely used in the literature it is clear that it overestimates the ki-
netic BL thickness because for Pr = 0.7 the kinetic BL thickness is smaller than
the thermal BL thickness. One can see this in figure 2.2 where the BL region, in-
dicated in red, is smaller for the kinetic BL than for the thermal BL. Therefore we
also determine the kinetic BL thickness by looking at the axial profile of the kinetic
energy dissipation. We define λ

ε”
u

u (kinetic BL thickness defined as the axial position
of the maximum value of ε”

u , multiplied by 2) because this definition selects the re-
gion where ε”

u is highest and it is this region where a particular good resolution is
required. Such defined kinetic BL thickness now well agrees with that of the thermal
BL, λ

ε”
u

u ≈ λ sl
θ

, as expected from PB theory for Pr≈ 1. Figure 2.6 shows that for both
definitions the kinetic BL becomes thicker closer to the sidewall. This is due to the
plumes traveling along the sidewall and lower velocities very close to the sidewall.
We note that therefore very close to the sidewall the definition of λ

ε”
u

u misrepresents
the BL thickness. Thus the enhanced grid resolution in the vertical direction near the
plates is most important around the cylinder axis (r = 0). In contrast, the azimuthal
(and radial) resolution are most important to properly resolve the flow close to the
sidewall. Note that the difference in the BL thicknesses between the fully resolved
and underresolved simulations is largest close to the sidewall, demonstrating that this
is indeed a delicate region from a resolution point of view.
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2.5 Conclusions

In summary, results from DNS with sufficient resolution using constant temperature
boundary conditions for the horizontal plates are in good agreement with the experi-
mental data, see figure 2.1. Previous DNS results showed a Nu number that was up to
30% higher than the experimental results. The new simulations have been performed
with much higher resolution than the previous simulations to properly resolve the
plume dynamics. Because in underresolved simulations the hot (cold) plumes travel
further from the bottom (top) plate than in the better resolved ones, due to insufficient
thermal dissipation close to the sidewall (where the grid cells are largest), the Nusselt
number is overestimated in underresolved simulations. It thus is crucial to properly
resolve the plume dynamics to accurately determine the Nusselt number and based
on the simulations we have defined the resolution criteria that have to be fulfilled to
have a fully resolved DNS simulation. When the simulation is not fully resolved the
exact relation εθ = κ∆2Nu/L2 for the thermal dissipation rate does not hold. This
is because the temperature gradients are smeared out in underresolved simulations
leading to an underestimation of the thermal dissipation rate. We also showed that
there is a strong radial dependence of the BL structures. At the cylinder axis (r=0)
the temperature profile obtained in the simulations agrees well with the PB case,
whereas close to the sidewall the agreement is worse due to rising (falling) plumes in
this region.



3
Prandtl and Rayleigh number dependence of

heat transport in high Rayleigh number
thermal convection ∗

Results from direct numerical simulation for three-dimensional Rayleigh-Bénard con-
vection in samples of aspect ratio Γ = 0.23 and Γ = 0.5 up to Rayleigh number
Ra = 2×1012 are presented. The broad range of Prandtl numbers 0.5 < Pr < 10 is
considered. In contrast to some experiments, we do not see any increase in Nu/Ra1/3,
neither due to Pr number effects, nor due to a constant heat flux boundary condition
at the bottom plate instead of constant temperature boundary conditions. Even at
these very high Ra, both the thermal and kinetic boundary layer thicknesses obey
Prandtl-Blasius scaling.

3.1 Introduction

Most experiments for Ra & 2×1011 are performed in samples with aspect ratios Γ≡
D/L = 0.5 and Γ = 0.23 samples. The majority of these experiments are performed
with liquid helium near its critical point [35–38, 43, 60, 61]. While [35, 36] and [37]
found a Nu increase with Nu ∝ Ra0.31, the experiments by [38] and [43, 60, 61] gave
a steep Nu increase with Nu ∝ Ra0.38. In these helium experiments the Pr number

∗Based on : R.J.A.M. Stevens, D. Lohse, R. Verzicco, Prandtl and Rayleigh number dependence of
heat transport in high Rayleigh number thermal convection, submitted to J. Fluid. Mech. (2011).
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Figure 3.1: Visualization of the instantaneous temperature (left) and vertical velocity field (right) for
the simulation at Ra = 2×1012 and Pr = 0.7 for Γ = 0.5. Red and blue indicate warm (up flowing) and
cold (down flowing) fluid, respectively, in the left (right) panel. See also movie 3.1 in the supplementary
material [115].

increases with increasing Ra. [39] and [40, 41] performed measurements around
room temperature with high pressurized gases with nearly constant Pr and do not find
such a steep increase. [120] found two Nu ∝ Ra1/3 branches in a Γ = 1 sample. The
high Ra number branch is 20% higher than the low Ra number branch. By necessity,
Nu increases more steeply in the transition region. The scaling in the transition region
happens to be around Nu ∝ Ra0.5. There are thus considerable differences in the heat
transfer obtained in these different experiments in the high Ra number regime. Very
recently, Ahlers and coworkers (see [42] and addendum to [41]) even found two
different branches in one experiment with the steepest branch going as Nu ∝ Ra0.36.

There is no clear explanation for this disagreement although it has been conjec-
tured that variations of the Pr number, the use of constant temperature or a constant
heat flux condition at the bottom plate, the finite conductivity of the horizontal plates
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Figure 3.2: (a) Nu vs Ra for Γ = 0.5. The green downward pointing triangles are experimental data
from [35, 36] after a reanalysis reported in [37], the red squares are from [38], the purple diamonds are
from [39] and [40–42]. The DNS results for Pr = 0.7 are indicated in black and are from [121]. The
data point for Ra = 2× 1012 is from this study. When the vertical error bar is not visible the error is
smaller than the dot size. (b) Parameter space for the data presented in panel a. Symbols as in panel a.
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Figure 3.3: (a) Nu vs Ra for Γ = 0.23. The upward pointing red triangles are from [43]. The DNS
results for Pr = 0.7 and Pr = 2.0 are indicated in black and blue, respectively. When the vertical error
bar is not visible the error is smaller than the dot size. (b) Parameter space for the data presented in
panel a. Symbols as in panel a. The black squares indicate DNS simulations presented in this chapter.

and side wall, non Oberbeck-Boussinesq effects, i.e. the dependence of the fluid
properties on the temperature, the existence of multiple turbulent states [63], and
even wall roughness and temperature conditions outside the sample might play a
role. Since the above differences among experiments might be induced by unavoid-
able technicalities in the laboratory set–ups, within this context, direct numerical
simulations are the only possibility to obtain neat reference data that strictly adhere
to the intended theoretical problem and that could be used as guidelines to interpret
the experiments: This is the main motivation for the present study.

We start this chapter with a description of the numerical procedure that is used to
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Figure 3.4: Nu vs Pr. The results for Ra = 2×108, Ra = 2×109, Ra = 2×1010, Ra = 2×1011 and
Ra = 1012 are indicated in black, red, blue, purple, and dark green, respectively. Panel a gives the DNS
results for Γ = 0.23 and panel b the prediction from the GL model for Γ = 1. The slight decrease of Nu
for Pr ≥ 3 and not too large Ra is also seen in experiments [122, 123].

investigate the influence on the heat transfer for two of the issues mentioned above.
First, we discuss the effect of the Pr number on the heat transport in the high Ra
number regime. Subsequently, we will discuss the difference between simulations
performed with a constant temperature at the bottom plate with simulations with
a constant heat flux at the bottom plate. We take the constant heat flux condition
only at the bottom plate, because in real setups the bottom plate is in contact with a
heater while the top plate is connected to a thermostatic bath. Thus, the condition of
constant heat flux applies at most only to the bottom plate [35–37]. At the top plate
constant temperature boundary conditions are assumed to strictly hold, i.e., perfect
heat transfer to the recirculating cooling liquid. We will conclude the chapter with a
brief summary, discussion, and outlook to future simulations.

3.2 Numerical procedure

The flow is solved by numerically integrating the three-dimensional Navier-Stokes
equations within the Boussinesq approximation. The numerical method is already
described in [57, 109, 124] and chapter 2 and here it is sufficient to mention that
the equations in cylindrical coordinates are solved by central second-order accurate
finite-difference approximations in space and time. We performed simulations with
constant temperature conditions at the bottom plate for 2×107 < Ra < 1×1012 and
0.5 < Pr < 10 in an aspect ratio Γ = 0.23 sample. We also present results for a sim-
ulation at Ra = 2×1012 at Pr = 0.7 in a Γ = 0.5 sample. In addition, we performed
simulation with a constant heat flux at the bottom plate and a constant temperature at
the top plate [57] for Pr = 0.7, Γ = 0.5, and 2×106 ≤ Ra≤ 2×1011. Because in all
simulations the temperature boundary conditions are precisely assigned, the surfaces
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are infinitely smooth, and the Boussinesq approximation is unconditionally valid, the
simulations provide a clear reference case for present and future experiments.

In chapter 2 we investigated the resolution criteria that should be satisfied in a
fully resolved DNS simulation. In chapter 4 the minimal number of nodes that should
be placed inside the boundary layers is determined. The resolutions used here are
based on this experience and we stress that in this chapter we used even better spatial
resolution than in chapter 2 to be sure that the flow is fully resolved.

To give the reader some idea of the scale of this study we mention the resolutions
that were used in the most demanding simulations, i.e., simulations that take at least
100.000 DEISA CPU hours each. For Γ = 0.23 this are the simulations at Ra =
2× 1011, which are performed on either a 641× 185× 1281 (azimuthal, radial, and
axial number of nodes) grid for Pr = 0.7 and Pr = 2.0 or on a 769× 257× 1537
grid for Pr = 4.38 and Pr = 6.4. The simulations at Ra = 1× 1012 are performed
on a 1081× 301× 2049 grid. The simulations for Ra = 2× 1011 were run for at
least 100 dimensionless time units (defined as L/

√
βg∆L), while these simulations

at Ra = 1× 1012 cover about 30− 40 time units. The simulation with a constant
heat flux condition at the bottom plate and constant temperature condition at the
top plate in a Γ = 0.5 sample with Pr = 0.7 at Ra = 2.25× 1011 is performed on a
1081×351×1301 grid. The simulation at Ra= 2×1012 with Pr = 0.7 in the Γ= 0.5
sample has been performed on a 2701×671×2501 grid, which makes it the largest
fully bounded turbulent flow simulation ever. This simulation takes about 100.000
vectoral CPU hours on HLRS (equivalent to ≈ 9×106 DEISA CPU hours). To store
one snapshot of the field (T , u1,u3, because u2 follows from continuity) costs 160
GB in binary format. A snapshot of this flow is shown in figure 3.1. Movies of this
simulation are included in the supplementary material

3.3 Prandtl number dependence

In figure 3.2a and figure 3.3a the DNS results for Pr = 0.7 in the Γ= 0.23 and Γ= 0.5
samples are compared with experimental data. The result for Ra = 2× 1012 in the
Γ = 0.5 sample agrees well with the experimental data of Niemela et al. [35–37] and
Ahlers et al. [39–41], while there is a visible difference with the results of Chavanne
et al. [38]. A comparison of the results for Γ = 0.23 with the experimental data of
Roche et al. [43] shows that there is a good agreement for higher Ra numbers, while
for lower Ra we obtain slightly larger Nu than in those experiments. We again stress
that we performed resolution checks for this Γ = 0.23 case (up to Ra = 2×1010), and
in addition considering the good agreement with the results for Γ = 0.5, we exclude
that our DNS results overestimate Nu.

Figure 3.2b and figure 3.3b shows that in some experiments the Pr number in-
creases with increasing Ra. This difference in Pr is often mentioned as one of the
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Figure 3.5: BL thicknesses for Pr = 0.7 in the Γ = 0.23 sample. a) The thermal BL thickness close to
the bottom and top plate averaged over the entire horizontal area scales with Ra−0.31 (black dashed line)
b) The kinetic (dark green line) and thermal (black line) BL thicknesses averaged between 0.25D/2 <
r < 0.50D/2 scale with Ra−0.26. Note that this is slightly less than in figure 3.5, when we average λθ

over the full area.

possible causes for the observed differences in the heat transfer between the experi-
ments. Figure 3.4 shows the Nu number as function of Pr for different Ra. This figure
shows that the effect of the Pr number on the heat transfer decreases with increasing
Ra. This means that the differences in the heat transport that are observed between
the experiments for Ra & 1011, see figure 3.2a, are not a Pr number effect. This is in
agreement with the theoretical prediction of the GL-model for Γ = 1, which is shown
in figure 3.4.

3.4 Scaling of thermal and kinetic boundary layers

We determined the thermal and kinetic BL thickness for the simulations in the Γ =
0.23 sample. The horizontally averaged thermal BL thickness (λθ ) is determined
from λ sl

θ
(r), where λ sl

θ
(r) is the intersection point between the linear extrapolation

of the temperature gradient at the plate with the behavior found in the bulk [125]. In
figure 3.5a it is shown that the scaling of the thermal BL thickness is consistent with
the Nu number measurements when the horizontal average is taken over the entire
plate.

The horizontally averaged kinetic BL thickness (λu) is determined from λ ”
u (r),

where λ ”
u (r) is based on the position where the quantity ε”

u := u ·∇2u reaches its
maximum. We use this quantity as [121] and [126] showed that it represents the
kinetic BL thickness better than other available methods. [121, 125] also explained
that this quantity cannot be used close to the sidewall as here it misrepresents the
kinetic BL thickness. For numerical reasons, it can neither be calculated accurately
in the center region. To be on the safe side we horizontally average the kinetic BL
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Figure 3.6: a) Kinetic and thermal BL thicknesses close to the bottom and top plate for Ra = 2×1010

for Γ = 0.23. b) The ratio between the kinetic and thermal BL thickness as function of Pr for different
Ra for Γ = 0.23. The green solid line indicates the prediction from the Prandtl-Blasius theory [126].
The magenta dashed line, which lies 15% above the theoretical prediction, is a guide to the eye. All
numerical data are horizontally averaged for 0.25D/2 < r < 0.50D/2.

between 0.25D/2 < r < 0.50D/2, where D indicates the diameter of the cell and all
given values refer to that used.

Figure 3.5b reveals that for Pr = 0.7 the kinetic and thermal BL thickness have
the same scaling and thickness over a wide range of Ra. In figure 3.6b the ratio
λu/λθ is compared with results of the Prandtl-Blasius BL theory. We find a constant
difference of about 15% between the numerical results and the theoretical PB type
prediction, see e.g. [126]. We emphasize that this is a good agreement, because the
PB BL. theory is for parallel flow over a infinitely flat plat plate, while in a aspect
ratio Γ = 0.23 cell one can hardly find a region of parallel flow. Thus even for these
large Ra numbers the scaling and the ratio of the kinetic and thermal boundary layer
thickness are well described by Prandtl-Blasius BL theory. This result agrees with the
experimental results of [127] and [33]. Indeed, [127] showed that the kinetic BL near
the sidewall obeys the scaling law of the Prandtl-Blasius laminar BL and [33] showed
the same for the boundary layers near the bottom plate. Recently, [34, 128] have
developed a method of expressing velocity profiles in the time-dependent BL frame
and found that not only the scaling obeys the PB expectation, but even the rescaled
velocity and temperature profiles From all this we can exclude that at Ra . 1012 the
BL is turbulent.

3.5 Constant heat flux at bottom plate

It has also been argued that the different boundary conditions at the bottom plate,
i.e. that some experiments are closer to a constant temperature boundary condition,
and some are closer to a constant heat flux boundary condition, might explain the
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Figure 3.7: a) Nu vs Ra for Γ = 0.5. Data as in figure 3.2a. The numerical data for Pr = 0.7 with
constant heat flux at the bottom and constant temperature at the top plate are indicted in blue and the
numerical data with constant temperature condition at both plates in black. b) Time-averaged tem-
perature at the bottom plate for simulations with constant heat flux at the bottom plate and constant
temperature at the top plate. The arrow indicates the direction of increasing Ra.

differences in the heat transport that are observed in the high Ra number regime. Fig-
ure 3.7a compares the Nu number in the simulations with constant temperature and
constant heat flux at the bottom plate. The figure shows that the difference between
these both cases is small and even decreases with increasing Ra. For large Ra no
difference at all is seen within the (statistical) error bars, which however increase
due to the shorter averaging time (in terms of large eddy turnovers) at the very large
Ra≥ 2×1011.

Figure 3.7b shows the time-averaged temperature of the bottom plate in the sim-
ulations with constant heat flux at the bottom plate for different Ra. The radial de-
pendence at the lower Ra numbers can be understood from the flow structure in the
sample: Due to the large scale circulation the fluid velocities are largest in the middle
of the sample. Thus in the middle more heat can be extracted from the plate than
close to the sidewall where the fluid velocities are smaller. It is the lack of any wind
in the corners of the sample that causes the relative high time-averaged plate temper-
ature there. The figure also shows that this effect decreases with increasing Ra. The
reason for this is that the turbulence becomes stronger at higher Ra and this leads to
smaller flow structures. Therefore the region close to the sidewall with relative small
fluid velocities decreases with increasing Ra and this leads to a more uniform plate
temperature at higher Ra. This effect explains that the simulations with constant tem-
perature and constant heat flux condition at the bottom plate become more similar
with increasing Ra.

The small differences between the simulations with constant temperature and con-
stant heat flux at the bottom plate show that the differences between the experiments
in the high Ra number regime can not be explained by different plate conductivity
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properties. This finding is in agreement with the results of Johnston and Doering
[58]. In their periodic two-dimensional RB simulations the heat transfer for simu-
lations with constant temperature and constant heat flux (both at the bottom and the
top plate) becomes equal at Ra≈ 5×106. For the three-dimensional simulations the
heat transfer for both cases also becomes equal, but at higher Ra. This is due to the
geometrical effect discussed before, see figure 3.7b, that cannot occur in periodic
two-dimensional simulations [58].

3.6 Conclusions

In summary, we presented results from three-dimensional DNS simulations for RB
convection in cylindrical samples of aspect ratios Γ = 0.23 and Γ = 0.5 up to Ra =
2× 1012 and a broad range of Pr numbers. The simulation at Ra = 2× 1012 with
Pr = 0.7 in an aspect ratio Γ = 0.5 sample is in good agreement with the experimen-
tal results of Niemela et al. [35–37]. and Ahlers et al. [39–41], while there is a visible
difference with the results of Chavanne et al. [38]. In addition, we showed that the
differences in the heat transfer observed between experiments for Ra & 2×1011 can
neither be explained by Pr number effects, nor by the assumption of constant heat
flux conditions at the bottom plate instead of constant temperature conditions. Fur-
thermore, we demonstrated that the scaling of the kinetic and thermal BL thicknesses
in this high Ra number regime is well described by the Prandtl-Blasius theory.

Several questions remain: Which effect is responsible for the observed difference
in Nu vs Ra scaling in the various experiments? Are there perhaps different turbu-
lent states in the highly turbulent regime as has been suggested for RB flow by [63],
but also for other turbulent flows in closed systems by [129]? At what Ra number
do the BLs become turbulent? As in DNSs both the velocity and temperature fields
are known in the whole domain (including in the boundary layers where the transi-
tion between the states is suggested to take place), they will play a leading role in
answering these questions.





4
Boundary layer structure in turbulent thermal

convection and its consequences for the
required numerical resolution ∗

Results on the Prandtl-Blasius type kinetic and thermal boundary layer thicknesses in
turbulent Rayleigh-Bénard convection in a broad range of Pr numbers are presented.
By solving the laminar Prandtl-Blasius boundary layer equations, we calculate the
ratio of the thermal and kinetic boundary layer thicknesses, which depends on the Pr
number only. It is approximated as 0.588Pr−1/2 for Pr�Pr∗ and as 0.982Pr−1/3 for
Pr∗� Pr, with Pr∗ ≡ 0.046. Comparison of the Prandtl-Blasius velocity boundary
layer thickness with that evaluated in the direct numerical simulations presented in
chapter 2 gives very good agreement. Based on the Prandtl-Blasius type consider-
ations, we derive a lower-bound estimate for the minimum number of the computa-
tional mesh nodes, required to conduct accurate numerical simulations of moderately
high (boundary layer dominated) turbulent Rayleigh-Bénard convection, in the ther-
mal and kinetic boundary layers close to bottom and top plates. It is shown that the
number of required nodes within each boundary layer depends on Nu and Pr and
grows with ∼ Ra0.15. This estimate agrees excellently with empirical results, which
were based on the convergence of the Nusselt number in numerical simulations.

∗Based on: O. Shishkina, R. J. A. M Stevens, S. Grossmann, D. Lohse, Boundary layer structure in
turbulent thermal convection and its consequences for the required numerical resolution, New J. Phys.
12, 075022 (2010).
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4.1 Introduction

Major progress in the understanding of the Rayleigh–Bénard (RB) system has been
made over the last decades, see e.g. the recent reviews [20, 21]. Meanwhile it has
been well established that the general heat transfer properties of the system, i. e.
Nu = Nu(Ra,Pr) and Re = Re(Nu,Pr), are well described by the Grossmann–Lohse
(GL) theory [25–28]. In that theory, in order to estimate the thicknesses of the kinetic
and thermal boundary layers (BL) and the viscous and thermal dissipation rates, the
boundary layer flow is considered to be scalingwise laminar Prandtl–Blasius flow
over a plate. Here we use the conventional definitions for the Ra and Pr number, see
chapter 1. The Reynolds number Re =UH/ν is defined with the wind amplitude U
which forms in the bulk of the RB container.

The assumption of a laminar boundary layer will break down if the shear Reynolds
number Res in the BLs becomes larger than approximately 420 [24]. Most exper-
iments and direct numerical simulations (DNS) currently available are in regimes
where the boundary layers are expected to be still (scalingwise) laminar, see [20].
Indeed, experiments have confirmed that the boundary layers scalingwise behave as
in laminar flow [33], i.e., follow the scaling predictions of the Prandtl–Blasius theory
[24, 30, 130–133]. In chapter 13 and Ref. [34] it is shown that not only the scaling
of the thickness, but also the experimental and numerical boundary layer profiles in
Rayleigh–Bénard convection agree perfectly with the Prandtl–Blasius profiles, if they
are evaluated in the time dependent reference frames, based on the respective momen-
tary thicknesses. This confirms that the Prandtl–Blasius boundary layer theory is in-
deed the relevant theory to describe the boundary layer dynamics in Rayleigh–Bénard
convection for not too large Res.

The aim of this chapter is to explore the consequences of the Prandtl–Blasius
theory for the required numerical grid resolution of the BLs in DNSs. Hitherto,
convergence checks can only be done a posteriori, by checking whether the Nus-
selt number does not considerably change with increasing grid resolution, see Refs.
[112, 118, 124, 134, 135] and chapter 2 or by guaranteeing (e.g. in ref. [48] and chap-
ter 2) that the Nusselt numbers calculated from the global energy dissipation rate or
thermal dissipation rate well agree with that one calculated from the temperature gra-
dient at the plates or the ones obtained from the overall heat flux. The knowledge
that the profiles are of Prandtl–Blasius type offers the opportunity to a priori deter-
mine the number of required grid points in the BLs for given Rayleigh number and
Prandtl number, valid in the boundary layer dominated ranges of moderately high Ra
numbers.

In section 4.2 we will first revisit the Prandtl–Blasius BL theory – see refs. [24,
30, 130–133] or for more recent discussions in the context of RB refs. [28, 136] –
and derive the ratio between the thermal boundary layer thickness δθ and the velocity
boundary layer thickness δu as functions of the Prandtl number Pr extending previous
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Figure 4.1: Solution of the Prandtl–Blasius equations (4.4)–(4.7): (a) Longitudinal velocity profile
dΨ

dξ
(ξ ) (solid curve) with respect to the similarity variable ξ . The tangent to the longitudinal velocity

profile at the plate (ξ = 0) and the straight line dΨ/dξ = 1 (both dashed lines) intersect at ξ = δ̃u ≡
A−1 ≈ 3.012, for all Pr. We define this value δ̃u as the thickness of the kinetic boundary layer. (b)
Temperature profile Θ(ξ ) as function of the similarity variable ξ for Pr = 0.7 (black solid curve), Pr =
4.38 (red solid curve) and Pr = 6.4 (green solid curve). The tangents to the profile curves at the plate
(ξ = 0) and the straight line Θ = 1 (dashed lines) define the edges (thicknesses) of the corresponding
thermal boundary layers, i. e., ξ = δ̃θ ≡C(Pr). For the presented cases Pr = 0.7, 4.38, and 6.4 one has
C(0.7)≈ 3.417, C(4.38)≈ 1.814, and C(6.4)≈ 1.596, respectively.

work (section 4.3). We will also discuss the limiting cases for large and small Pr,
respectively. The transitional Prandtl number between the two limiting regimes turns
out to be surprisingly small, namely Pr∗ = 0.046. The crossover range is found to
be rather broad, roughly four orders of magnitude in Pr. In section 4.4 we note that
the Prandtl–Blasius velocity BL thickness is different from the velocity BL thickness
based on the position of the maximum r.m.s. velocity fluctuations (widely used in the
literature), but well agrees with a BL thickness based on the position of the maximum
of an energy dissipation derivate that was introduced in chapter 2 We then derive the
estimate for the minimum number of grid points that should be placed in the boundary
layers close the top and bottom plates, in order to guarantee proper grid resolution.
Remarkably, the number of grid points that must have a distance smaller than δu from
the wall increases with increasing Ra, roughly as∼Ra0.15. This estimate is compared
with a posteriori results for the required grid resolution obtained in various DNSs of
the last three decades, finding good agreement. Section 4.5 is left to conclusions.

4.2 Prandtl boundary layer equations

The Prandtl–Blasius boundary layer equations for the velocity field u(x,z) (assumed
to be two-dimensional and stationary) over a semi-infinite horizontal plate [24, 30,
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130–133] read

ux∂xux +uz∂zux = ν∂z∂zux, (4.1)

with the boundary conditions ux(x,0) = 0, uz(x,0) = 0, and ux(x,∞) = U . Here
ux(x,z) is the horizontal component of the velocity (in the direction x of the large-
scale circulation), uz(x,z) the vertical component of the velocity (in the direction z
perpendicular to the plate), and U the horizontal velocity outside the kinetic boundary
layer (wind of turbulence). Correspondingly, the equation determining the (station-
ary) temperature field T (x,z) reads

ux∂xT +uz∂zT = κ∂z∂zT, (4.2)

with the boundary conditions T (x,0)=Tplate and T (x,∞)=Tbulk, which under Oberbeck–
Boussinesq conditions is the arithmetic mean of the upper and lower plate tempera-
ture. Applying these equations to RB flow implies that we assume the temperature
field to be passive.

The dimensionless similarity variable ξ for the vertical distance z from the plate
measured at the distance x from the plate’s edge is

ξ = z

√
U
xν

. (4.3)

Since the flow in Prandtl theory is two-dimensional, a streamfunction Ψ̂ can be intro-
duced, which represents the velocity field. The streamfunction is non-dimensionalized
as Ψ = Ψ̂/

√
xνU , and the temperature is measured in terms of ∆/2, giving the non-

dimensional temperature field Θ. Rewriting eqs. (4.1) and (4.2) in terms of Ψ and Θ

one obtains

d3
Ψ/dξ

3 +0.5Ψd2
Ψ/dξ

2 = 0, (4.4)

d2
Θ/dξ

2 +0.5Pr ΨdΘ/dξ = 0. (4.5)

Here the boundary conditions are

Ψ(0) = 0, dΨ/dξ (0) = 0, dΨ/dξ (∞) = 1, (4.6)

Θ(0) = 0, Θ(∞) = 1. (4.7)

The temperature and velocity profiles obtained from numerically solving equa-
tions (4.4)–(4.7) (for particular Prandtl numbers) are already shown in textbooks
[24, 30, 133] and in the context of RB convection in refs. [136, 137]: From the
momentum equation (4.6) with above boundary conditions one immediately obtains
the horizontal velocity dΨ/dξ . The dimensionless kinetic boundary layer thickness
δ̃u can be defined as that distance from the plate at which the tangent to the function
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dΨ/dξ at the plate (ξ = 0) intersects the straight line dΨ/dξ = 1 (see figure 4.1 a).
As equation (4.4) and the boundary conditions (4.6) contain no parameter whatso-
ever, the dimensionless thickness δ̃u of the kinetic boundary layer with respect to the
similarity variable ξ is universal, i.e., independent of Pr and U or Re,

δ̃u = A−1 ≈ 3.012 or A≈ 0.332. (4.8)

Solving numerically equation (4.5) with the boundary conditions (4.7) for any
fixed Prandtl number, one obtains the temperature profile with respect to the simi-
larity variable ξ (see figure 4.1 b). Note that in contrast to the longitudinal velocity
dΨ/dξ , the temperature profile Θ depends not only on ξ but also on the Prandtl num-
ber, since Pr appears in equation (4.5) as the (only) parameter. The distance from the
plate at which the tangent to the Θ profile intersects the straight line Θ = 1 defines
the dimensionless thickness of the thermal boundary layer,

δ̃θ =C(Pr), (4.9)

where C(Pr) is a certain function of Prandtl number. E.g. one numerically finds
C ≈ 3.417, 1.814, and 1.596 for Pr = 0.7, 4.38, and 6.4, respectively (see figure 4.1
b).

From (4.8) and (4.9) one obtains the ratio between the (dimensional) thermal
boundary layer thickness δθ and the (dimensional) kinetic boundary layer thickness
δu:

δθ

δu
=

δ̃θ

δ̃u
= AC(Pr). (4.10)

As discussed above, the constant A and the function C = C(Pr) are found from the
solutions of equations (4.4)–(4.7) for different Pr. A and C(Pr) reflect the slopes of
the respective profiles,

A =
d2Ψ

dξ 2 (0), C(Pr) =
[

dΘ

dξ
(0)
]−1

. (4.11)

With (4.3) the physical thicknesses are δu = δ̃u/
√

U
xν

and δθ = δ̃θ/
√

U
xν

, generally
depending on U and the position x along the plate. The physical thermal BL thickness
then is

δθ =
C(Pr)√
U/(xν)

=

[√
U
xν

∂Θ

∂ξ
(0)

]−1

=

[
∂Θ

∂ z
(0)
]−1

. (4.12)

Thus, explicitly it depends neither on U nor on the position x along the plate. Re-
minding the definition of the thermal current J = 〈uzT 〉−κ∂z〈T 〉, we get 〈 ∂Θ

∂ z (0)〉=
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1
∆/2〈

∂T
∂ z (0)〉=

2
κ∆

J = 2H−1Nu, i. e., on x-average we have

δθ =
H

2Nu
. (4.13)

δθ is the so-called slope thickness, see Sect. 2.4 of reference [136]. In contrast to the

thermal BL thickness δθ the physical velocity BL thickness δu = A−1/
√

U
xν

depends
explicitly both on the position x and on the wind amplitude U . In a Rayleigh–Bénard
cell we choose for x a representative value x = ãL = ãΓH. Then the famous Prandtl
formula [130] results

δu =
aH√

Re
. (4.14)

Here a =
√

ãΓ

A2 = A−1
√

ãΓ. The constant a has been obtained empirically [27], based
on the experimental measurements by [138] performed in a cylindrical cell of aspect
ratio one, filled with water. The result was [27]

a≈ 0.482. (4.15)

We note that this value probably depends on the aspect ratio, on the shape of the RB
container, and can also be different for numerical 2D Rayleigh–Bénard convection
[103, 106, 139]. It will also be different for the slope thickness as considered here or
other definitions as e. g. the 99% -thickness.

It seems worthwhile to note that similarly to the case of δθ also δu can be ex-
pressed by a profile slope at the plate. Analogously to the temperature case one
calculates for the kinetic thickness δu =U/ ∂ux

∂ z (0). Here U appears explicitly and the
derivative may depend on x. The denominator is the local stress tensor component,
which – after averaging – describes the momentum transport, just as the temperature
profile derivative at the plate characterises the heat transport. In combination with
eq. (4.14) it says that the kinetic stress behaves as 〈 ∂ux

∂ z (0)〉 ∼U
√

Re/(aH).
From eqs. (4.10) and (4.14) we also find the useful (and known) relation for

Prandtl-Blasius boundary layers

δθ = aθC(Pr)
H√
Re

with aθ = A ·a≈ 0.160. (4.16)

From solving equations (4.4)–(4.7) together with relations (4.11) one obtains that
the BL thickness ratio (4.10) has two limiting cases, namely δθ/δu ∼ Pr−1/2 for
very small Pr� 1 and δθ/δu ∼ Pr−1/3 for very large Pr� 1. We thus present the
ratio of the thermal and kinetic boundary layer thicknesses normalised by Pr−1/3 in
figure 4.2 for different Pr from Pr = 10−6 to 106. The figure confirms that the scaling
of the ratio between the thermal and kinetic boundary layer thicknesses in the low
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Figure 4.2: Double-logarithmic plot of the ratio of the thermal and kinetic boundary layer thicknesses,
normalised by Pr−1/3, as obtained from numerical solution of equations (4.4)–(4.7) as function of Pr
(solid black line). For large Pr the curve through the data is constant, for small Pr the (plotted, reduced)
curve behaves ∝ Pr−1/6. Approximation (4.22) (green dotted line) is indistinguishable from δθ/δu in
the region Pr < 3× 10−4. Approximation (4.24) (blue dashed-dotted line) well represents δθ/δu for
Pr > 0.3; for Pr > 3 it practically coincides with approximation (4.25). Approximation (4.26) (red
solid curve) connects the analytical approximations in the transition range 3×10−4 ≤ Pr ≤ 3 between
the lower and upper Prandtl number regimes.

and high Prandtl number regimes is Pr−1/2 and Pr−1/3, respectively. Between these
two limiting regimes there is a transition region, whose width is about 4 orders of
magnitude in Pr. In the next section we will derive analytic expressions for the ratio
δθ/δu in the respective regimes, which will be used in the remainder of the chapter to
analyse the resolution properties for DNS in the BLs of the Rayleigh–Bénard system.

In the Prandtl–Blasius theory the asymptotic velocity amplitude U is a given pa-
rameter; the resulting heat current Nu is a performance of the boundary layers only.
In contrast, in Rayleigh–Bénard convection the heat transport is determined by the
BLs together with the bulk flow. Therefore in RB convection the wind amplitude U
no longer is a passive parameter, but U and Nu are actively coupled properties of the
full thermal convection process.

The Reynolds number Re is defined as the dimensionless wind amplitude,

Re =
UH

ν
. (4.17)

From the law for the kinetic BL thickness (4.14), the thermal BL thickness δθ (4.13),
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and the BL thickness ratio (4.10) one obtains

Re =

(
aH
δu

)2

=

(
δθ

δu

)2(aH
δθ

)2

= 4a2Nu2
(

δθ

δu

)2

. (4.18)

This Re∼Nu2 law is in perfect agreement with the GL theory [25–28]. In that theory
several sub-regimes in the (Ra,Pr) parameter space are introduced, depending on
the dominance of the BL or bulk contributions. In regimes I and II the BL of the
temperature field dominates, while in III and VI it is the thermal bulk. Regimes I
and II differ in the velocity field contributions: It either is the u-BL (I) or the u-bulk
(II) which dominates; analogously the pair III and IV is characterized. The labels
` (for lower Pr) and u (for upper Pr) distinguish the cases in which the thermal BL
is thicker or smaller than the kinetic one. All ranges in the GL theory, which are
thermal boundary layer dominated, show the Re ∼ Nu2 behaviour, namely Il , Iu, IIl ,
IIu. In the thermal bulk dominated ranges of RB convection the relation between Re
and Nu is different. In IIIu we have Re∼ Nu4/3, in IVl it is Re∼ Nu, and in IVu also
Re ∼ Nu4/3 holds; but here the Prandtl–Blasius result (4.18) is not applicable, since
the heat transport mainly depends on the heat transport properties of the bulk. In the
range I∞, although boundary layer dominated, also a different relation (Re ∼ Nu3)
holds; here the upper and the lower kinetic BLs fill the whole volume and therefore
there is no free flow outside the BLs, in contrast to the Prandtl–Blasius assumption
of an asymptotic velocity with the LSC amplitude U .

4.3 Approximations for the ratio δθ/δu

In this section we will derive analytical approximations for the ratio δθ/δu for the
three regimes identified in the previous section, cf. figure 4.2. We start by discussing
the low (Pr < 3× 10−4) and the high (3 < Pr) Prandtl number regimes, before we
discuss the transition region 3×10−4 ≤ Pr ≤ 3.

4.3.1 Approximation of δθ/δu for Pr < 3×10−4

In the case of very small Prandtl number, Pr� 1, the thickness of the velocity bound-
ary layer is negligible compared with the thickness of the temperature boundary layer,
i.e., δθ � δu. Hence, in most of the thermal boundary layer it is ux ≈U . Introducing
the similarity variable as in ref. [30]

η =
z
2

√
U
xκ

, (4.19)

one obtains the following equation for the temperature as a function of η :

d2
Θ/dη

2 +2η dΘ/dη = 0, with Θ(0) = 0, Θ(∞) = 1.
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The solution of this boundary value problem is the Gaussian error function

Θ(η) = erf(η)≡ 2√
π

∫
η

0
e−t2

dt. (4.20)

According to (4.3) and (4.19), the similarity variable ξ used in the Prandtl equations
and the similarity variable η used in the approximation for Pr � 1 are related as
follows

η =
1
2

Pr1/2
ξ . (4.21)

Applying now the formulae (4.20), (4.21) and (4.11) we obtain the following equali-
ties:

2√
π
=

dΘ

dη
(0) =

dΘ

dξ
(0) · dξ

dη
=

1
C(Pr)

·2Pr−1/2.

This leads to the approximation for the function C(Pr) =
√

πPr−1/2 for very small
Pr.

δθ

δu
= A
√

πPr−1/2 ≈ 0.588Pr−1/2, Pr� 1. (4.22)

In figure 4.2 one can see that for very small Prandtl numbers, Pr < 3×10−4, the
approximation (4.22) is as expected indistinguishable from the numerically obtained
δθ/δu.

4.3.2 Approximation of δθ/δu for Pr > 3

Meksyn [133], based on the work by Pohlhausen [132], derived that the solution of
the temperature equation (4.5), together with relation (4.7) equals

Θ

(
ξ√
2

)
= D

∫
ξ/
√

2

0
e−F(t)Prdt, F(t) =

1√
2

∫ t

0
Ψ(q)dq. (4.23)

The constant D can be found as usual from the boundary condition at infinity and was
approximated in [132, 133] for Pr > 1 as follows

D =
0.478Pr1/3

c(Pr)
, c(Pr)≈ 1+

1
45Pr

− 1
405Pr2 +

161
601425Pr3 − ...

From this and (4.23) one derives

0.478Pr1/3

c(Pr)
= D =

dΘ

d(ξ/
√

2)
(0) =

√
2

dΘ

dξ
(0) =

√
2

C(Pr)
.
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This connects c(Pr) and C(Pr) as follows

C(Pr)≈
√

2
0.478

c(Pr)Pr−1/3 ≈ 2.959c(Pr)Pr−1/3,

resulting in the approximation

δθ

δu
= AC(Pr) = EPr−1/3c(Pr), E ≈ A

√
2

0.478
≈ 0.982. (4.24)

For Pr� 1, the function c(Pr) approaches 1, hence C(Pr)≈ 2.959Pr−1/3, implying

δθ

δu
= EPr−1/3, Pr� 1. (4.25)

In figure 4.2 the approximation (4.24) is presented as a blue dash-dotted curve. For
Pr > 3 the function (δθ/δu)Pr1/3 almost coincides with the constant E.

4.3.3 Approximation of δθ/δu in the crossover range 3×10−4 ≤ Pr ≤ 3

As one can see in figure 4.2, the approximation (4.22) well represents δθ/δu in the
region Pr < 3×10−4, while (4.25) is a good approximation of δθ/δu for Pr > 3. An
approximation of the ratio of the thermal and kinetic boundary layer thicknesses in
the transition region 3× 10−4 ≤ Pr ≤ 3 is obtained by applying a least square fit to
the numerical solutions of the Prandtl–Blasius equations (4.4)-(4.7). One finds:

δθ

δu
≈ Pr−0.357+0.022logPr, 3×10−4 ≤ Pr ≤ 3. (4.26)

As seen in figure 4.2, this relation is a good fit of the full solution in the transition
regime.

4.3.4 Summary

For the ratio δθ/δu of the thicknesses of the thermal and kinetic boundary layers,
which depends strongly (and only) on Pr, we find according to (4.22), (4.25), and
(4.26)

δθ

δu
=


A
√

πPr−1/2, A≈ 0.332, Pr < 3×10−4,
Pr−0.357+0.022logPr, 3×10−4 ≤ Pr ≤ 3,
E Pr−1/3, E ≈ 0.982, Pr > 3.

(4.27)

The crossover Prandtl number Pr∗ between the asymptotic behaviours, cf. first and
last line of (4.27), is defined as the intersection point Pr∗ = 0.046 of the asymptotic
approximations. Note that this crossover between the small-Pr behaviour δθ/δu ∝
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Pr−1/2 and the large-Pr behaviour δθ/δu ∝ Pr−1/3 does not happen at a Prandtl num-
ber of order 1, but at the more than 20 times smaller value Pr∗ = 0.046. In this sense
most experiments are conducted in the large Pr regime. However, also note that other
definitions of the BL thicknesses lead to other crossover Prandtl numbers.

Finally, we also give the thickness of the kinetic BL in the three regimes, as ob-
tained from (4.27) and (4.13), namely

δu =


0.5Nu−1Pr1/2A−1π−1/2H, Pr < 3×10−4,
0.5Nu−1Pr0.357−0.022logPrH, 3×10−4 ≤ Pr ≤ 3,
0.5Nu−1Pr1/3E−1H, Pr > 3.

(4.28)

We compare this Prandtl–Blasius result (4.28) for the kinetic boundary layer
thickness in terms of Nu and Pr (thus valid if the heat transport is BL dominated)
with the estimate given in chapter 2, where the kinetic boundary layer thickness in a
cylindrical cell is identified as two times that height at which the averaged quantity

ε
”
u := 〈u ·∇2u〉t,φ ,r (4.29)

has a maximum, because it was empirically found that the maximum of ε”
u is approx-

imately in the middle of the velocity boundary layer. Here u is the velocity field and
the averaging is over time t, the azimuthal direction φ , and over the radial direction
0.1R < r < 0.9R, with R the radius of the cylindrical convective cell. The restricted
range for the radial direction has been used in order to exclude the singularity region
close to the cylinder axis and the region close to the sidewall, where the definition
misrepresents the kinetic boundary layer thickness. Figure 4.3 shows that there is a
very good agreement between the theoretical Prandtl–Blasius slope boundary layer
thickness and that obtained using (4.29). The figure also shows that the position
of the maximum r.m.s. velocity fluctuations is not a good indicator for the velocity
boundary layer edge; it rather seems to identify the position where the LSC is the
strongest.

4.4 Resolution requirements within the boundary layers

We now come to the main point of this chapter: What can we learn from the Prandtl–
Blasius theory for the required mesh resolution in the BLs of DNS of turbulent RB
convection? Obviously, a “proper” mesh resolution should be used in order to obtain
accurate results. In a perfect DNS the local mesh size should be smaller than the
local Kolmogorov ηK(x, t) and Batchelor ηB(x, t) scales (see e.g. ref. [140]), and the
resolution in the boundary layers should be also sufficient, see e.g. Refs. [110, 134,
137, 141] and chapter 2. It indeed has been well established that the Nusselt number
is very sensitive to the grid resolution used in the boundary layers; when DNS is
underresolved, the measured Nusselt number is too high, see Refs. [44, 57, 109, 110,
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Figure 4.3: Profiles of ε”
u (4.29) (black), and the r.m.s. velocity fluctuations for the azimuthal velocity

component uφ (green) for (a) Ra = 108 and Pr = 6.4 and (b) Ra = 2×109 and Pr = 0.7. The profiles
have been normalised with the respective maxima for clarity. The vertical black lines indicate the
velocity boundary layer thickness based on (4.28). The red dashed and solid lines indicate the heights
at which the quantity ε”

u (4.29) has a maximum and two times this height, respectively. The vertical
green line indicates the position of the maximum r.m.s. velocity fluctuations.

134, 142] and chapter 2. Hitherto, the standard way to empirically check whether the
mesh resolution is sufficient is to try a finer mesh and to make sure that the Nusselt
number is not too different. In this way the minimal number of grid points that is
needed in the boundary layer is obtained by trial and error: Grötzbach [110] varied
the number of grid points in the boundary layer between 1 and 5 in simulations up
to Ra = 3× 105 with Pr = 0.71 and found that 3 grid points in the boundary layers
should be sufficient. Verzicco and Camussi [109] tested this at Ra = 2× 107 and
Pr = 0.7 and stated that at least 5 points should be placed in the boundary layers. In
chapter 2 several the grid resolution for Ra = 2× 106 to 2× 1011 and Pr = 0.7 are
tested. Here it is found that for Ra = 2× 109 the minimum number of nodes in the
boundary layers should be around 10 and that this number increases for increasing
Ra. Together with the earlier series of papers the data clearly suggest that indeed there
is an increase of required grid points in the BL with increasing Rayleigh number.

However, one must be careful. The empirical determination of the required num-
ber of grid points in the BL is not only intensive in computational cost, but also
difficult. The Nusselt number obtained in the simulations not only depends on the
grid resolution in the BLs at the top and bottom plates, but also on the grid resolution
in the bulk and at the side walls where the thermal plumes pass along (see chapter
2). So obviously a general theory-based criterion for the required grid resolution in
the thermal and kinematic boundary layers will be helpful for performing future sim-
ulations. In this section we will derive such a universal criterion, harvesting above
results from the Prandtl–Blasius boundary layer theory.
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We first define the (local) kinetic energy dissipation rates per mass,

εu(x, t)≡
ν

2 ∑
i

∑
j

(
∂ui(x, t)

∂x j
+

∂u j(x, t)
∂xi

)2

. (4.30)

Its time and space average for incompressible flow with zero velocity b.c. is 〈εu〉t,V =

ν ∑i ∑ j〈
(

∂ui(x,t)
∂x j

)2
〉t,V . It is connected with the Nusselt number through the exact

relation

〈εu〉t,V =
ν3

H4 (Nu−1)RaPr−2. (4.31)

This follows directly from the momentum equation for Rayleigh–Bénard convection
in Boussinesq approximation [143]. Here, 〈·〉t,V denotes averaging over the whole
volume of the convective cell and over time and (later) 〈·〉t,A denotes averaging over
any horizontal plane and time.

We start with the well established criterion that in a perfect DNS simulation the
(local) mesh size must not be larger than the (local) Kolmogorov scale [144] ηK(x, t),
which is locally defined with the energy dissipation rate of the velocity,

ηK(x, t) =
(
ν

3/εu(x, t)
)1/4

. (4.32)

ηK is the length scale at which the inertial term∼ u2
r/r and the viscous term∼ νur/r2

of the Navier-Stokes equation balance, where ur ∼ (εur)1/3 has been assumed for the
velocity difference at scale r. A corresponding length scale ηT follows from the
balance of the advection term ∼ urTr/r and the thermal diffusion term κTr/r2 in the
advection equation; it is

ηT (x, t) =
(
κ

3/εu(x, t)
)1/4

= ηK(x, t)Pr−3/4. (4.33)

However, for large Pr the velocity field is smooth at those scales at which the tempera-
ture field is still fluctuating. Then the velocity difference ur ∼

√
εu/νr and advection

term and thermal diffusion term balance at the so-called Batchelor scale [145] ηB,
which is defined as

ηB(x, t) =
(
νκ

2/εu(x, t)
)1/4

= ηK(x, t)Pr−1/2. (4.34)

For small Pr < 1 obviously ηT > ηB > ηK and for comparison with the grid resolu-
tion, the Kolmogorov scale ηK seems to be the most restrictive (i.e., smallest) length
scale. In contrast, for large Pr > 1 it ηT < ηB < ηK and one may argue that ηT is
the most restrictive length scale. This indeed may be the case in the Prandtl number
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regime in which the velocity field can still be described through Kolmogorov scaling
ur ∼ (εur)1/3, but for even larger Pr the velocity field becomes smooth ur ∼

√
εu/νr

and then the grid resolution should be compared to the Batchelor scale ηB as smallest
relevant length scale. In below analysis, for Pr > 1 we will restrict ourselves to this
limiting case.

We now define global Kolmogorov and Batchelor length scales η
global
K ≡ ν3/4

〈εu〉1/4
t,V

and η
global
B ≡ ν1/4κ1/2

〈εu〉1/4
t,V

, respectively, (and also the global length scale η
global
T ≡ κ3/4

〈εu〉1/4
t,V

).

Using the exact relation (4.31), one can find how the global Kolmogorov length
η

global
K depends on Ra, Pr, and Nu, namely

η
global
K ≡ ν3/4

〈εu〉1/4
t,V

=
Pr1/2

Ra1/4(Nu−1)1/4 H. (4.35)

The admissible global mesh size hglobal should clearly be smaller than both η
global
K

and η
global
B , which implies that one is on the safe side provided that

hglobal ≤ Pr1/2

Ra1/4(Nu−1)1/4 H for Pr ≤ 1 (4.36)

or with the relation (4.34) between the Kolmogorov and Batchelor length

hglobal ≤ 1
Ra1/4(Nu−1)1/4 H for Pr > 1. (4.37)

A similar way to estimate mesh requirements in the bulk was suggested for the first
time by Grötzbach [110]. Note that with these estimates for the required bulk reso-
lution for most times and locations one is on the safe side, as equation (4.31) is an
estimate for the volume averaged energy dissipation rate, which is localized in the
boundary layers. However, not only the background field but also plumes detaching
from the boundary layers do require an adequate resolution.

To estimate the number of nodes that should be placed in the boundary layers, we
will first estimate the area averaged energy dissipation rate in a horizontal plane in
the velocity BL, 〈εu〉t,A∈BL. Employing eqs. (4.17), (4.14) and (4.30), one can find a
lower bound for this quantity, namely

〈εu〉t,A∈BL ≥ ν

〈(
∂ux

∂ z

)2
〉

t,A

≥ ν

(〈
∂ux

∂ z

〉
t,A

)2

≈ ν

(
U
δu

)2

=

= ν

(
νRe
H

Re1/2

aH

)2

=
ν3Re3

a2H4 . (4.38)
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From eqs. (4.31), (4.38), (4.18) and (4.27) it follows a lower bound for the ratio

〈εu〉t,A∈BL

〈εu〉t,V
≥ Pr2Re3

a2RaNu
= 64a4Nu5 Pr2

Ra

(
δθ

δu

)6

=


64π3a4A6Nu5Pr−1Ra−1, Pr < 3×10−4,
64a4Nu5Pr−0.15+0.132logPrRa−1, 3×10−4 ≤ Pr ≤ 3,
64a4E6Nu5Ra−1, Pr > 3.

(4.39)

For the Kolmogorov length ηBL
K in the velocity BL one can therefore write

η
BL
K ≡

〈(
ν3

εu

)1/4
〉

t,A∈BL

≈
(
〈εu〉t,V
〈εu〉t,A∈BL

)1/4

η
global
K . (4.40)

The mesh size hBL in the BL must be smaller than ηBL
K and ηBL

B , i.e., one is on the
safe side if

hBL .


2−3/2a−1Nu−3/2Pr3/4A−3/2π−3/4H, Pr < 3×10−4,
2−3/2a−1Nu−3/2Pr0.5355−0.033logPrH, 3×10−4 ≤ Pr ≤ 1,
2−3/2a−1Nu−3/2Pr0.0355−0.033logPrH, 1 < Pr ≤ 3,
2−3/2a−1E−3/2Nu−3/2H, Pr > 3,

(4.41)

according to (4.39), (4.40), (4.36) and (4.37).
From the relations (4.41), (4.27) and (4.13) one can estimate the minimum number

of nodes of the computational mesh, which must be placed in each thermal and kinetic
boundary layer close the plates. We find that this minimum number of nodes in the
thermal boundary layers is

Nth.BL ≡ δθ

hBL

&


√

2aNu1/2Pr−3/4A3/2π3/4, Pr < 3×10−4,√
2aNu1/2Pr−0.5355+0.033logPr, 3×10−4 ≤ Pr ≤ 1,√
2aNu1/2Pr−0.0355+0.033logPr, 1 < Pr ≤ 3,√
2aNu1/2E3/2, Pr > 3,

(4.42)

while the minimum number of nodes in the kinetic boundary layers is

Nv.BL ≡ δu

hBL =
δu

δθ

δθ

hBL

&


√

2aNu1/2Pr−1/4A1/2π1/4, Pr < 3×10−4,√
2aNu1/2Pr−0.1785+0.011logPr, 3×10−4 ≤ Pr ≤ 1,√
2aNu1/2Pr0.3215+0.011logPr, 1 < Pr ≤ 3,√
2aNu1/2Pr1/3E1/2, Pr > 3.

(4.43)
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The number of nodes in the thermal boundary layer looks very restrictive for very low
Pr; however, one should realise that for very low Pr the thermal boundary layer also
becomes much thicker than the velocity boundary layer. Hence, the criterion for the
number of nodes in the thermal boundary layers determines the ideal distribution of
nodes above the viscous boundary layer. For very high Pr the kinetic boundary layer
becomes much thicker than the thermal boundary layer, and hence the restriction
for the velocity boundary layer determines the ideal distribution of nodes above the
thermal boundary boundary layer. Note that for large Pr equation (4.42) suggests that
the number of grid points in the thermal boundary layer becomes independent of Pr
(for fixed Nu): Indeed, as the velocity field is smooth anyhow, with increasing Pr no
extra grid points are necessary in the thermal BL.

In figure 4.4 we show the minimum number of nodes Nth.BL and Nv.BL, respec-
tively, necessary to simulate the cases which have been investigated experimentally
so far, for different Ra and Pr. The data points are generated by introducing the
experimental values of Ra,Pr, and the (measured) corresponding Nu into the formu-
las (4.42), (4.43). Based on these quasi-data points, one can give e.g. the following
fits for the minimum number of nodes within the boundary layers for the case of
Pr ≈ 0.7:

Nth.BL ≈ 0.35Ra0.15, 106 ≤ Ra≤ 1010, (4.44)

Nv.BL ≈ 0.31Ra0.15, 106 ≤ Ra≤ 1010. (4.45)

Note that the numerical pre-factors in these estimates significantly depend on the
Prandtl number and on the empirically determined (ref. [27]) value of a, cf. eq.
(4.15). The minimum node numbers for other values of Pr can be calculated directly
using the relations (4.42)–(4.43). Apparently the scaling exponent depends much less
on Pr. Note that all these estimates only give lower bounds on the required number
of nodes in the boundary layers.

As discussed at the beginning of this section, previous studies by Grötzbach [110],
Verzicco and Camussi [109], and the study presented in chapter 2 found an increasing
number of nodes that should be placed in the thermal and kinetic boundary layers.
The theoretical results thus confirm all above studies, because the increasing number
of nodes was due to the increasing Ra number at which the tests were performed.
To be more specific: according to the estimates (4.44) and (4.45) for Pr = 0.7 the
minimum number of nodes that should be placed in the thermal and kinetic bound-
ary layers is N ≈ 2.3 for Ra = 3× 105, N ≈ 4.4 for Ra = 2× 107, and N ≈ 8.7 for
Ra = 2× 109. The empirically found values at the respective Ra with Pr ≈ 0.7 are
3 for Ra = 3×105, 5 for Ra = 2×107, and 10 for Ra = 2×109. Thus there is very
good agreement between the theoretical results and the empirically obtained values,
especially if one considers the difficulties involved in determining these values empir-
ically, and the empirical value for the constant a (4.15) that is used in the theoretical
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Figure 4.4: Minimum number of BL nodes necessary in DNS of boundary layer dominated, moderately
high RB convection. (a) Nth.BL (4.42) in the thermal boundary layers and (b) Nv.BL (4.43) in the
kinetic boundary layers, required to simulate the experimentally investigated cases, references [59]
(lilac squares, Pr = 0.67), [38] (black triangles, 0.60 ≤ Pr ≤ 7.00), [146] (blue circles, 0.68 ≤ Pr ≤
5.92), [62] (green triangles, 0.73 ≤ Pr ≤ 6.00), [147] (red pentagons, 3.76 ≤ Pr ≤ 5.54), [123] (black
crosses, Pr = 4.2) and [127] (black pluses, Pr = 7.0). Dashed lines are fits to the quasi-data (measured
values introduced into eqs. (4.42), (4.43)), with precision O(10−4); rounding the respective numbers
to their upper bounds gives (a) Nth.BL ≈ 0.35Ra0.15 (4.44) and (b) Nv.BL ≈ 0.31Ra0.15 (4.45) for the
quasi-data in the ranges 106 ≤ Ra≤ 1010 and 0.67≤ Pr ≤ 0.73.

estimates. We want to emphasize that not only the boundary layers close to the plates,
but also the kinetic boundary layers close to the vertical walls must be well resolved.

To sum up, the mesh resolution should be analysed a priori using the resolution
requirements in the bulk (4.36), (4.37) and in the boundary layers (4.42), (4.43).
Having conducted the DNS, the Kolmogorov and Batchelor scale should be checked
a posteriori, to make sure that the mesh size was indeed small enough (as it has been
done, for example, in refs. [112, 118]).
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4.5 Conclusions

In summary, we used laminar Prandtl–Blasius boundary layer theory to determine the
relative thicknesses of the thermal and kinetic boundary layers as functions of Pr, see
equation 4.27.

We found that neither the position of the maximum r.m.s. velocity fluctuations nor
the position of the horizontal velocity maximum reflect the slope velocity boundary
layer thickness, although many studies use these as criteria to determine the boundary
layer thickness. In contrast to them, the algorithm introduced in chapter 2 agrees very
well with the theoretical estimate of the kinetic slope boundary layer thickness.

We used the results obtained from the Prandtl–Blasius boundary layer theory to
derive a lower bound on the minimum number of nodes that should be placed in the
thermal and kinetic boundary layers close to the plates. We found that this mini-
mum number of nodes increases not slower than ∼ Ra0.15 with increasing Ra. This
result is in excellent agreement with results from several numerical studies over the
last decades, in which this minimum number of nodes was determined empirically.
Hence, the derived estimates can be used as guideline for future direct numerical
simulations.



5
Effect of plumes on measuring the large scale

circulation in Rayleigh-Bénard convection ∗

We studied the properties of the large-scale circulation (LSC) in turbulent Rayleigh-
Bénard (RB) convection by using results from direct numerical simulations in which
we placed a large number of numerical probes close to the sidewall. The LSC orienta-
tion is determined by either a cosine or a polynomial fit to the azimuthal temperature
or azimuthal vertical velocity profile measured with the probes. We study the LSC
in Γ = D/L = 1/2 and Γ = 1 samples, where D is the diameter and L the height.
For Pr = 6.4 in an aspect ratio Γ = 1 sample at Ra = 1× 108 and 5× 108 the ob-
tained LSC orientation is the same, irrespective of whether the data of only 8 or all
64 probes per horizontal plane are considered. In a Γ = 1/2 sample with Pr = 0.7
at Ra = 1×108 the influence of plumes on the azimuthal temperature and azimuthal
vertical velocity profiles is stronger. Due to passing plumes and/or the corner flow the
apparent LSC orientation obtained using a cosine fit can result in a misinterpretation
of the character of the large-scale flow. We introduce the relative LSC strength, which
we define as the ratio between the energy in the first Fourier mode and the energy in
all modes that can be determined from the azimuthal temperature and azimuthal ver-
tical velocity profiles, to further quantify the large-scale flow. For Ra = 1× 108 we
find that this relative LSC strength is significantly lower in a Γ = 1/2 sample than in
a Γ = 1 sample, reflecting that the LSC is much more pronounced in a Γ = 1 sample
than in a Γ = 1/2 sample. The determination of the relative LSC strength can be ap-

∗Based on: R.J.A.M. Stevens, H.J.H. Clercx, and D. Lohse, Effect of Plumes on Measuring the
Large Scale Circulation in Turbulent Rayleigh-Bénard Convection, submitted to Phys. Fluids (2011).
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plied directly to available experimental data to study high Rayleigh number thermal
convection and rotating RB convection.

5.1 Introduction

In experiments the LSC is measured by using thermistors that are embedded in the
sidewall, see e.g. [148], or by using small thermistors that are placed in the flow
at different azimuthal positions and different heights, see e.g. [149]. Since the
LSC transports warm (cold) fluid from the bottom (top) plate up (down) the side
wall, the thermistors can detect the location of the up-flow (down-flow) by show-
ing a relatively high (low) temperature. The properties of the LSC have recently
been intensively studied in experiments [36, 75, 98, 149–163], numerical simulations
[75, 109, 119, 164, 165], and models [75, 156–158, 163, 166–169]. For a complete
overview of all literature in which certain aspect of the LSC are studied we refer to
the recent review of Ahlers, Grossmann, and Lohse [20]. In part II of this thesis we
investigate several properties of the LSC in experiments and numerical simulations of
rotating RB convection. In chapter 14 in part III of this thesis we model the reversal
behavior of the LSC, which we observe in (quasi)-two-dimensional experiments and
DNS simulations.

In experiments the LSC is measured by using thermistors that are embedded in
the sidewall, see e.g. [148], or by using small thermistors that are placed in the flow
at different azimuthal positions and different heights, see e.g. [149]. Since the LSC
transports warm (cold) fluid from the bottom (top) plate up (down) the side wall, the
thermistors can detect the location of the up-flow (down-flow) by showing a rela-
tively high (low) temperature. In addition, there have also been a number of direct
measurements of the LSC by particle image velocimetry (PIV) and laser Doppler
velocimetry (LDV) (see, for example Refs. [99, 150, 152]) that complement the ther-
mistor method.

In this chapter we investigate the properties of the LSC with results from direct
numerical simulations (DNS). Though DNSs are limited both in Ra and in duration,
i.e. in number of LSC turnover times, to smaller values than the experimental ana-
logues the advantage is that in contrast to the experiments the full spatial information
is available. We will take advantage of this in order to verify the algorithms em-
ployed in experiments to identify the LSC orientation based on a limited number
of probes. We will introduce two existing methods to determine the LSC orienta-
tion over time. The first method [98] determines the LSC orientation from a cosine
fit to the azimuthal temperature profile measured with the probes. This method has
been extremely successful in revealing important features, i.e. azimuthal meander-
ing, reversals, and cessations, of the LSC [98, 155, 156, 161]. In the second method
the LSC orientation is determined by using a second order polynomial fit around the
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Table 5.1: The columns from left to right indicate the following: Ra, Pr, Γ, the number of grid points
in the azimuthal, radial and axial directions (Nθ ×Nr×Nz). The last two columns indicate the relative
LSC strength determined using equation (5.2), see section 5.6, using the data of only 8 (S̄m(8)) and all
64 (S̄m(64)) probes in the horizontal midplane, respectively.

Ra Pr Γ Nθ ×Nr×Nz S̄m(8) S̄m(64)
1×108 6.4 1.0 257×129×257 0.74 0.70
1×108 6.4 1.0 385×193×385 0.65 0.68
5×108 6.4 1.0 257×129×257 0.68 0.73
5×108 6.4 1.0 385×193×385 0.70 0.76
1×108 0.7 1/2 193×65×257 0.45 0.57
1×108 0.7 1/2 257×97×385 0.42 0.54
1×108 6.4 1/2 193×65×257 0.06 0.27

maximum and the minimum. Using this method the sloshing mode of the LSC, which
is caused by an off-center motion of the LSC, was discovered [149, 162, 163]. We
note that this can not be obtained by the cosine fit method as this method assumes
that there is no off-center motion of the LSC.

So far these procedures have been applied to experimental data where the data of
8 azimuthally equally spaced probes were available. The benefit of the simulations
over the experiments is that it is easy to place a large number of probes in the flow.
Here we placed up to 64 azimuthally equally spaced numerical probes at different
heights into the numerical RB sample. With an arrangement of up to 64 probes
we can determine how the extracted information on the LSC and plume dynamics
depends on the number of probes that is used. We also visualized the flow by movies
that show the flow dynamics in horizontal or vertical planes, see the accompanying
material [115].

The chapter is organized as follows. In section 5.2 we start with a discussion
of the numerical method that has been used. This is followed in section 5.3 by a
discussion of the traditional methods that are used in experiments to determine the
LSC orientation. Based on the results obtained by these methods we discuss the
characteristics of the LSC in a Γ = 1 (section 5.4) and Γ = 1/2 (section 5.5) sample.
An important question for both high Ra number [39, 170] and rotating RB convection
(see part II of this thesis) is whether or not there is a single LSC present. Therefore
we will discuss a new method in section 5.6, which is based on the energy in the
different Fourier modes of the azimuthal temperature and azimuthal vertical velocity
profile, to determine whether a single LSC is present. In section 5.7 we will look into
time resolved properties of the LSC. The general conclusions of this chapter will be
presented in section 5.8.
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5.2 Numerical method and procedure

The flow is solved by numerically integrating the three-dimensional unsteady Navier-
Stokes equations within the Boussinesq approximation. For a detailed discussion of
the numerical code we refer to Refs. [107–109] and chapter 2 of this thesis. The flow
is simulated in a cylindrical sample in order to keep the geometry identical to the one
used in most experiments. In chapters 2 and 3 and part II of this thesis it is shown
that the simulation results obtained with this code agree excellent with experimental
results. The cases we studied are based on the most common experimental setups
that are available, namely Pr ≈ 6.4 and Pr ≈ 0.7 at an aspect ratio Γ = D/L of 1 and
1/2. A detailed overview of the simulations can be found in table 5.1.

In the simulations we placed up to 64 azimuthally equally spaced numerical
probes per horizontal plane that provide simultaneous point-wise measurements of
the temperature and the three velocity and vorticity components at the heights 0.25L,
0.50L, and 0.75L and a distance 0.45D from the cylinder axis. Grid refinement tests
were performed because the region close to the sidewall, where the LSC properties
are sampled, is most sensitive from a resolution point of view, see chapter 2. The sim-
ulations are fully resolved according to the criteria of chapters 2 and 4 and the LSC
properties we find do not depend on the grid resolution. Note that the azimuthal and
radial number of grid points required to get the same resolution with respect to the
turbulent length scales is less for the Γ = 1/2 cases than for the Γ = 1 cases because
for the latter a larger horizontal extent has to be simulated.

5.3 Methods to determine the LSC orientation

Following Ahlers and coworkers [20, 98, 156], the orientation and strength of the
LSC can be determined by fitting the function

θi = θm +δm cos(φi−φm) (5.1)

to the temperatures recorded by the numerical probes at the height z = 0.5L and the
azimuthal positions φi = 2iπ/np, where np indicates the number of probes. The three
parameters θm, δm, and φm are obtained from least square fits. Here δm is a measure
of the temperature amplitude of the LSC and φm is the azimuthal orientation of the
LSC at midheight. The azimuthal average of the temperature at the horizontal mid-
plane is given by θm. We calculated temperatures θt and θb, orientations φt and φb,
and amplitudes δt and δb for the top and bottom levels at z = 0.75L and z = 0.25L
separately by the same method. For experiments [20, 98, 156] exactly this method is
applied to the data of 8 equally spaced thermistors, see figure 5.1.

A second method that is applied to determine the LSC orientation is to make
a polynomial fit around the sensor that records the highest (lowest) temperature
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Figure 5.1: Azimuthal temperature profile averaged over 4τ f at midheight for Ra = 5×108, Pr = 6.4,
and Γ = 1. The measured data from the numerical probes are indicated by the dots. The solid black line
shows the cosine fit (eq. (5.1)) to the data with offset θm (dashed line) and amplitude δm. The black
cross indicates the position of φ T

m,c. The red cross indicates the position of the probe that records the
highest temperature and thus the position of φ T

m,m. The blue solid line gives the polynomial fit around
the maximum. Its maximum, indicated by the blue cross, indicates the position of φ T

m,p. The φ(x) range
that is considered in the polynomial fit is 1

2 π . Panel a and b shows the procedure applied to the data of 8
and 64 equally spaced probes at midheight, respectively. The corresponding azimuthal vertical velocity
profiles are given in figure 5.8.

Table 5.2: The LSC orientation in this chapter is determined from the azimuthal temperature or az-
imuthal vertical velocity profile with different methods. In addition, the LSC orientation is also deter-
mined at different heights. As explained in the text this information is indicated in the notation φ 3

1,2. In
this table the meaning of the symbols at the index locations 1, 2, and 3, is summarized.

Index Symbol Meaning
1 b Height 0.25L
1 m Height 0.50L
1 t Height 0.75L
2 c Cosine fit
2 p Polynomial fit
2 m Maximum
3 T Azimuthal temperature profile
3 w Azimuthal vertical velocity profile

[149, 162]. Finally, since we have a large number of numerical probes, i.e. up to
64 azimuthally equally spaced per horizontal level, we also determine the LSC orien-
tation by finding the probe that records the highest (lowest) temperature. Again the
LSC orientation based on these two methods is determined separately for all three
levels, see figure 5.1.



68 CHAPTER 5. EFFECT OF PLUMES ON MEASURING THE LSC

To distinguish the different methods we introduce a notation with a second in-
dex, i.e. φ∗,[c,p,m]. Here c indicates that φ is determined using a cosine fit to the
azimuthal temperature profile, p that φ is determined using a polynomial fit around
the maximum (or minimum) observed in the azimuthal profile, and m indicates that
the maximum (or minimum) observed in the azimuthal profile is used. Because the
numerical probes record both the temperature and vertical velocity component we
use both to determine the LSC orientation. In the rest of this chapter we will use the
notation φ T

∗,∗ to indicate that the orientation is based on the azimuthal temperature
profile and φ w

∗,∗ when it is based on the azimuthal vertical velocity profile. Hence φ

has three indices, i.e. φ 3
1,2, see table 5.2 for a detailed overview. In the rest of this

chapter we will indicate the numerical value of an index when this index is varied.
Because the numerically obtained azimuthal profiles can be very noisy, we applied

a moving averaging filter to the data obtained from the numerical probes to eliminate
the detection of very small plumes. In experiments these events are not detected
anyhow by thermistors, since these need time to react to temperature changes in the
flow. We decided to apply a moving averaging filter of 4τ f , where τ f is defined
with respect to the free-fall velocity U f as τ f = L/U f (L is the height of the sample).
Recently, Bailon-Cuba et al. [171] showed the characteristic convective velocity Uc

of the LSC is approximately U f /5 for the parameter ranges Ra = 107− 109, Γ =
1/2− 12, and Pr = 0.7. This means that the LSC turnover time τLSC defined as
τLSC = 2L/Uc is about 10 τ f .
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Figure 5.2: The LSC orientation for Ra = 1× 108, Pr = 6.4, and Γ = 1 on the 257× 129× 257 grid
based on the data of 64 azimuthally equally spaced probes per horizontal level. The black, red, and
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m,p, respectively. a) φ T
m,2 based on the azimuthal temperature profile

averaged over 50τ f (≈ 5 LSC turnover times), b) φ w
m,2 based on the azimuthal vertical velocity profile

averaged over 50τ f , c) φ w
m,2 based on the azimuthal vertical velocity profile averaged over 4τ f . d)

Enlargement of the graph shown in panel c to reveal more details.
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Figure 5.3: φ w
m,c (solid black line) and φ T

m,c (red dashed line) for Ra = 1× 108, Pr = 6.4, and Γ = 1
on the 257× 129× 257 grid, and based on the azimuthal vertical velocity and azimuthal temperature
profile averaged over 4τ f . Here the data of all 64 azimuthally equally spaced probes at midheight have
been used.

5.4 Results for Γ = 1

Figure 5.2 shows the typical behavior of the LSC orientation for Pr = 6.4 in a Γ = 1
sample. The figure shows φ T

m,2 and φ w
m,2. In order to show that the LSC orientation

based on the temperature and the vertical velocity data is almost identical we consider
first a long averaging time (50τ f ). The results are displayed in figure 5.2a and b. The
similarity is expected since the LSC carries warm fluid from the bottom plate up the
sidewall and vice versa. To show the influence of this long time averaging we show
φ w

m,2 based on the azimuthal vertical velocity profile after averaging over 4τ f , see
figure 5.2c and 5.2d. When no time averaging is applied the graph looks similar,
with some additional peaks due to very small plumes, to the one where the data is
averaged over 4τ f . Figure 5.3 shows that the LSC orientation can be determined more
precisely from the vertical velocity than from the temperature even for this relatively
high Pr (i.e. small thermal diffusivity). The difference between the LSC orientation
determined from the vertical velocity and the temperature seems to depend on several
parameters such as the Ra and the Pr number, and the aspect ratio. However, at the
moment we do not have enough numerical data available to systematically study this.
For Γ = 1 the obtained LSC orientation at midheight is the same when the data of
only 8 or all 64 probes is used, but not when the data of only 2 probes is used.

From figure 5.2 it becomes clear that the LSC orientation, obtained by the poly-
nomial and cosine fit, can differ significantly. This is due to the off-center mo-
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Figure 5.4: The red, black, and blue lines indicate ∆φ w
b,p, ∆φ w

m,p, and ∆φ w
t,p, respectively for Ra =

1×108, Pr = 6.4, and Γ = 1 on the 257×129×257 grid. Panel a and b show ∆φ w
1,p when the azimuthal

vertical velocity profile is averaged over 50τ f and 4τ f , respectively. The average of ∆φ w
1,p is π and this

is in agreement with a cosine fit. The deviations from this value are due to plumes and the off-center
motion of the LSC. Here the data of all 64 azimuthally equally spaced probes per horizontal level have
been used.

tion of the LSC [149, 162, 163]. Figure 5.4 shows ∆φ = φmax − φmin, i.e. the
difference between the orientation of the strongest up (φmax) and down going mo-
tion (φmin) obtained using the polynomial fit, fluctuates around ∆φ = π . To quan-
tify the strength of these fluctuations we calculate 〈(∆φ w

1,p − π)2〉1/2. The values
based on the data of 64 (8) probes per horizontal level for the case presented in
figure 5.4 are 〈(∆φ w

t,p− π)2〉1/2 ≈ 1.09(1.04), 〈(∆φ w
b,p− π)2〉1/2 ≈ 0.84(0.77), and

〈(∆φ w
m,p−π)2〉1/2 ≈ 1.11(1.01). Because the fluctuation strength is the same when

the data of 8 and 64 equally spaced probes per horizontal level are considered we
conclude that the use of 8 probes is sufficient to capture these statistics in a Γ = 1
sample. In figure 5.5 it is shown that the LSC orientation, obtained using the poly-
nomial fit method, can be different at the different heights. We note that the same is
observed when the LSC orientation based on a cosine fit is considered. This indicates
that the LSC is not always flowing straight up and down, but is also moving in the
azimuthal direction, and thus performs twisting motions [151]. We note that some
phenomena, like the drift of the LSC due to the Coriolis force, see Ref. [154], can
be analyzed using the LSC orientation based on the polynomial and cosine method,
because in this case only the long term drift of the LSC is important.

More remarkably is the presence of a specific frequency of approximately 25τ f

in the signal φ w
m,c−φ w

m,p, see figure 5.7. This specific frequency seems to be related
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Figure 5.5: The red, black, and blue lines indicate φ w
b,p, φ w

m,p, and φ w
t,p, respectively, for Ra = 1×108,

Pr = 6.4, and Γ = 1 on the 257× 129× 257 grid. Panel a and b show φ w
1,p based on the azimuthal

profiles of the vertical velocity averaged over 50τ f and 4τ f , respectively. The difference between the
LSC orientation at the different levels is due to plumes and the torsional motion of the LSC. Here the
data of all 64 azimuthally equally spaced probes per horizontal level have been used.

Figure 5.6: Sketch of the top view on the RB sample. The dotted line indicates the orientation of the
LSC based on the cosine fit and the red (up-pointing) and blue (down-pointing) arrows indicated the
flow direction close to the bottom and top plate, respectively. Strong plumes are detected alternatingly
on the left and right side of the LSC, see crosses, with a specific frequency, see also figure 5.2.

to the frequency in which plumes are passing the horizontal midplain [172], which
in our case shows up in the frequency in which plumes are detected on the left and
right hand side of the LSC orientation based on the cosine fit, see figure 5.6. This
frequency might also be related to the low frequency mode found already in Ref.
[173] or to the off-center oscillation of the LSC [174].
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Figure 5.7: The power spectra of φ w
m,c− φ w

m,p shows a maximum around 25τ f , which is indicated by
the vertical dashed line. This frequency is caused by plumes that pass the LSC orientation based on the
cosine fit on the left and right side . The different spectra are obtained from simulations for Pr = 6.4
in a Γ = 1 sample for different Ra and resolution, i.e. Ra = 1×108 on a 257×129×257 (red) and on
a 385×193×385 grid (black), and Ra = 5×108 on a 257×129×257 (green) and a 385×193×385
(blue) grid.

We find this frequency in our simulations for Pr = 6.4 in a Γ = 1 sample. We
note that we also find this frequency when we do not apply any time averaging on
the data before we determine the LSC orientation. Actually one can already see this
phenomenon in figure 5.2d where φ w

m,p fluctuates around φ w
m,c with a typical period of

about 25τ f . Further confirmation is obtained when the temporal behavior of the data
obtained from the 64 probes at midheight is shown in a movie, see the supplementary
material [115]. The movie is based on the data obtained from the simulation on the
385× 193× 385 grid at Ra = 5× 108 with Pr = 6.4 in a Γ = 1 sample. The movie
shows a passing plume at t ≈ 2412, see the snapshot of the movie in figure 5.8b,
which is indicated by the two peak structure around the maximum position obtained
by the cosine fit. When this plume is passed the double peak structure disappears.
Subsequently, the LSC orientation based on the polynomial fit method is smoothly
passing the LSC orientation based on the cosine fit. Thus showing an off-center
motion of the LSC. We note that having a large number of probes is essential to
confirm these plume events. To show this we made a movie of the same time interval,
see the supplementary material [115] and the snapshot in figure 5.8a, with the data of
only 8 probes. From these movies and figure 5.8a we conclude that it is impossible
to see the double peak structure when the data of only 8 probes is used and therefore
we cannot distinguish the off-center motion of the LSC from passing plumes, when
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Figure 5.8: Snapshot of the azimuthal vertical velocity profile averaged over 4τ f for Pr = 6.4 in a
Γ = 1 sample at Ra = 5× 108. The symbols have the same meaning as indicated in figure 5.1. Panel
a indicates the obtained profile using the data of 8 probes and panel b the profile as it is obtained from
the data of 64 probes. The accompanying movies can be found in the supplementary material [115].

the plumes stretches over two rows of thermistors.
In summary, in a Γ = 1 sample the obtained LSC orientation using a cosine and

polynomial fit is the same when the data of only 8 or all 64 azimuthally equally spaced
probes per horizontal level are used. Because the azimuthal temperature profile is
only an indirect measure of the LSC orientation we find that the LSC orientation can
be determined with more precision from the azimuthal vertical velocity profile. In
addition, we find that many of its interesting phenomena like azimuthal meandering,
reversals, cessations, and the sloshing mode of the LSC look the same when the
data of only 8 or all 64 azimuthally equally spaced probes per horizontal level are
considered. However, only with the data of 64 equally spaced probes per horizontal
level the effect of passing plumes on the azimuthal temperature and azimuthal vertical
velocity profiles can be identified.

5.5 Results for Γ = 1/2

We now come to the Γ = 1/2 case. For this geometry Verzicco and Camussi [109]
have used the data accessibility provided by direct numerical simulations to show that
the large scale circulation can be either in a single-roll state (SRS) or in a double-
roll state (DRS). Subsequently, a model introduced by Stringano and Verzicco [164]
found that the switching between the DRS and the SRS can influence the Nusselt
number, and can thus be a possible reason for the bimodal behavior of Nusselt found
in some experiments, see e.g. [43, 61].

The first extensive experimental study on the transition between the SRS and the
DRS was performed by Xi and Xia [160]. They studied flow mode transition in
samples of aspect ratio 1, 1/2 and 1/3. Figure 10 of their paper [160] shows the
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Figure 5.9: The PDF of |φ w
b,c−φ w

t,c| for Ra = 1×108. The PDF for Pr = 6.4 and Γ = 1 is given in blue.
The red and black line give the PDF for Pr = 6.4 and Pr = 0.7 in the Γ = 1/2 geometry, respectively.

percentages of the time the flow spends in either the SRS or the DRS. In addition,
they showed that the heat transfer in the SRS is higher than in the DRS. Recently,
Weiss & Ahlers [170] have also experimentally investigated the switching between
the SRS and the DRS, but now over a much larger range of Ra than Xi and Xia [160].
The conclusion of this work is summarized in figure 11 of Ref. [170]. That figure
shows that the SRS is more dominant at higher Ra and smaller Pr. They note that
they find a good agreement with the results of Xi and Xia in the Ra number range
in which both experiments overlap. In addition, the work of Xi and Xia [160] and
Weiss and Ahlers [170] showed that the flow state can not always be defined as SRS
or DRS. This is particularly important for Ra . 3×109. E.g., for Ra = 1×108 and
Pr = 4.38 the flow state is undefined for about 50% of the time according to Weiss
and Ahlers [170].

In this chapter we will qualitatively confirm these findings experimental and nu-
merical findings. We will restrict ourselves to this relatively low Ra number regime,
namely to Ra = 1×108: First, in order to directly compare with the Γ = 1 case of the
previous section, second, because current high Ra number simulations, see chapter 2
and chapter 3 of this thesis, are too limited in the number of turnover times to obtain
sufficient statistics on the different flow states.

Our simulations confirm Weiss & Ahlers’s [170] finding that there is more disor-
der in a Γ = 1/2 sample than in a Γ = 1 sample. We find that in this low Ra number
regime it is important to have a large number of probes to accurately represent the
azimuthal temperature and azimuthal vertical velocity profiles to analyze the flow.
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Figure 5.10: Snapshot of the regions with the strongest, i.e. w = 0.35wmax, up (red) and down-flow
(blue) for Ra = 1× 108 and Γ = 1/2. a) Pr = 0.7, SRS, b) Pr = 0.7, very strong corner flows, c)
Pr = 6.4, DRS, d) Pr = 6.4, strong plume/torsional motion. Supplementary movies that offer a full
three dimensional view are provided in the supplementary material [115].
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In this regime we see that deflection of plumes due to corner rolls and other plumes
happens more often than in a Γ = 1 sample. These effects can be observed in the
supplementary movies for Γ = 1/2 at Ra = 1×108 and Pr = 0.7 and Pr = 6.4 [115].
In the movies that show horizontal cuts at the heights 0.25L, 0.50L, and 0.75L one
can see that the hot and cold regions interchange more often in a Γ = 1/2 sample than
in a Γ = 1 sample.

In order to determine whether there is a SRS or a DRS in this geometry we de-
termined the probability density function (PDF) of the quantity |φ w

b,c− φ w
t,c|. When

this PDF peaks around zero it means that the fluid is flowing straight up, and this
indicates the presence of a SRS. When there is a DRS the PDF should peak around
π . Figure 5.9 shows that for Pr = 6.4 in a Γ = 1 sample the PDF peaks around
zero and this confirms the dominance of the SRS in this geometry. For Pr = 0.7 in
a Γ = 1/2 sample the figure shows that there is a small peak around zero, but it is
much less pronounced than for the Γ = 1 case. For Pr = 6.4 in a Γ = 1/2 sample the
figure shows that the PDF is nearly uniform, which would suggest that neither the
SRS or the DRS is dominant. This agrees with the results of Weiss & Ahlers [170],
since they find that for Pr = 4.38 and Ra . 3× 109 the flow state is poorly defined
and no state dominates. Figure 5.10 reveals the origin of these nearly uniform PDFs
in the Γ = 1/2 sample by showing three-dimensional visualizations of the regions
where the vertical velocities are strongest. An analysis of these (and similar figures)
revealed that the uniform PDF is due to the possibility of different flow states, i.e. the
SRS (figure 5.10a) with |φ w

b,c−φ w
t,c| ≈ 0, the DRS (figure 5.10c) with |φ w

b,c−φ w
t,c| ≈ π ,

strong corner flows (figure 5.10b) which can have any |φ w
b,c−φ w

t,c|, and strong plume
and/or torsional motions (figure 5.10d) which also can have any |φ w

b,c−φ w
t,c|.

To better compare our results with the results of Weiss & Ahlers [170] we also
determined the PDF of the quantity φ w

b/t,c−φ w
m,c, see figure 5.11. Here φ w

b/t,c means
that both φ w

b,c and φ w
t,c are compared with φ w

m,c to construct the PDF. A similar PDF for
higher Ra, based on experimental data, can be found in figure 21 of Weiss & Ahlers
[170]. Figure 5.11 shows this PDF based on the data of only 8 and all 64 equally
spaced probes per horizontal level for the cases of figure 5.9. First of all, figure 5.11
shows that the DRS is much more pronounced for Pr = 6.4 than for Pr = 0.7, which
is in agreement with the results of Weiss and Ahlers [170] and the results shown
in figure 5.9. a comparison of the PDFs in figure 5.11 reveals that the PDFs based
on the data of 8 and all 64 equally spaced probes are almost identical. The largest
difference is visible for Pr = 6.4 in a Γ = 1 sample. Here the PDF based on the data
of 64 equally spaced probes is more confined in the SRS region than the one based
on 8 equally spaced probes, because the larger number of probes reduces ’random’
fluctuations in the obtained LSC orientation.

Furthermore, and this is the main issue here, for this relatively low Ra sometimes
the data of three rows of 8 thermistors can give misleading hints for the actual flow
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Figure 5.11: The PDF of φ w
b/t,c−φ w

m,c for Ra = 1×108, see text for details. The dashed and solid lines
indicate the PDF based on the data of only 8 or all 64 probes equally spaced probes per horizontal level,
respectively. The vertical dashed lines indicate the definition of the SRS according to Xi and Xia [160]
and Weiss & Ahlers [170].

state of the system due to the effect of passing plumes and corner rolls on the az-
imuthal profiles. The importance of these effects is shown in figure 5.12. This figure
shows that based on the data of 8 azimuthally equally spaced probes at each hori-
zontal level the flow structure shown in figure 5.10b, which is a SRS with a strong
corner flow, would be identified as a DRS. In addition, the figure shows that the full
azimuthal temperature profiles reveal that a higher azimuthal resolution (e.g., 64 in-
stead of only 8 probes) could resolve the double peak structure (originating from the
coexistence of the SRS with some corner flow), which makes it possible to distin-
guish this state from a real DRS.

We note that the experiments of Weiss & Ahlers [170] show that for Pr = 4.38
and Ra . 3× 109 the flow state is undefined for about 50% of the time. In the ex-
periments the SRS only establishes itself for higher Ra, where the flow state is much
better defined, as the area of the corner flow becomes smaller and smaller (14). It
is therefore likely that the examples presented here are primarily important in the
low Ra number regime investigated here and are much less common in the higher Ra
number regime considered in most experiments. We stress however that one does not
know a priori whether one is in a difficult case or in a case where the method works
fine. Therefore we feel that it is important to realize that there are some limitations in
the methods to determine the flow state from three rows of 8 equally spaced thermis-
tors. An example of such a difficult case is the breakdown of the LSC when a strong
rotation is applied around the cylinder axis, see part II of this thesis.
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Figure 5.12: Red (top), black (middle), and blue (bottom) data indicate the azimuthal temperature
profile at the heights 0.25L, 0.50L, and 0.75L, respectively, for the flow state indicated in figure 5.10b.
The dots indicate the data of 8 azimuthally equally spaced probes per horizontal plane. Based on the
cosine fits (solid lines) obtained from this probe data this state would be identified as a DRS, while
figure 5.10b shows that it is in fact a SRS with a strong corner flow. The dashed lines show that a higher
azimuthal resolution can resolve the double peak structure of the corner flow and the main flow. The
temperatures at 0.25L (0.75L) have been raised (lowered) by 0.1 for clarity.

5.6 The relative LSC strength

The instantaneous temperature profiles in figure 5.12 show that the LSC is not always
clearly present, meaning that the cosine fit becomes poor. In order to study this in
more detail, we introduce the concept of the relative LSC strength, which we define
as the strength of the LSC, i.e. the cosine mode, with respect to the strength of the
plumes and turbulent fluctuations, i.e. the fluctuations around the cosine fit.

A convenient way to define a relative LSC strength that is independent of the
number of probes is to determine the energy in the different Fourier modes of the
azimuthal temperature or the azimuthal vertical velocity profile. In order to obtain
relative LSC strength S̄k with a number between 0 and 1 we normalize the energy in
the first Fourier mode, i.e. the cosine mode, as follows:

S̄k = Max

((
∑

te
tb E1

∑
te
tb Etot

− 1
N

)
/

(
1− 1

N

)
,0

)
. (5.2)

Here ∑
te
tb E1 indicates the sum of the energy in the first Fourier mode over time, i.e.

from the beginning of the simulation t = tb to the end of the simulation t = te, ∑
te
tb Etot

the sum of the total energy in all Fourier modes over time, and N the total number
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of Fourier modes that can be determined. Note that the factor 1/N is only used to
subtract the part of energy coming from the equi-distribution among all the modes.
The number of Fourier modes N that can be determined is np/2, where np = 2i is the
number of probes and i is an integer. The subscript k (= b,m, t) indicates the height
level in the sample at which the relative LSC strength is determined. Here we will
only determine S̄k for the middle row of thermistors, thus only S̄m. We note that the
LSC amplitude δm and the phase φm of the first Fourier mode are identical to the ones
determined when using the least square fit in equation (5.1). We moreover note that
the quantity S̄k is not time resolved and thus does not allow to study the switching
between the SRS and DRS [170]. Results on time-resolved relative LSC strengths
will be presented in the next section.

The normalization in eq. (5.2) has been chosen such that the relative LSC strength
S̄m always has a value between 0 and 1: The value 1 indicates that the azimuthal pro-
file is a pure cosine profile, which is a signature of the LSC according to [98], and the
value 0 indicates that the magnitude of the cosine mode is equal to (or weaker than)
the value expected from a random noise signal. S̄m � 0.5 indicates that the cosine
fit on average is a reasonable approximation of the data, as then most energy in the
signal is in the first Fourier mode, i.e. the cosine mode. In contrast, S̄m� 0.5 indi-
cates that most energy is in the higher Fourier modes, meaning that the application of
a cosine fit to the data becomes questionable. Somehow arbitrary, we define the SRS
as dominant once S̄m > 0.5.

To further demonstrate these properties of S̄k, we analyze the test function

θi( j) = Acos cos(φi + j/100)+ f ( j). (5.3)

Here φi = 2iπ/np and f ( j) is a set of Gaussian distributed random numbers with a
certain standard deviation 〈 f 2〉1/2, the ”time” j is varied between 1 and 125000, and
the noise is supposed to model the effect of turbulent fluctuations around the cosine
fit. The result for the relative strength S̄k of the LSC as function of the noise level is
shown in figure 5.13a. Indeed, 1 ≥ S̄k ≥ 0 and S̄k > 0.5 only if the noise is smaller
than the amplitude,

〈
f 2
〉1/2

/Acos� 1.
We now come back to the numerical data of our simulations. For each simulation

we calculated the relative LSC strength S̄m based on the instantaneous azimuthal
vertical velocity profiles at midheight based on the data of either only 8 or all 64
probes at the horizontal midplane. We show the results for two aspect ratios, two
Rayleigh numbers, and two Prandtl numbers in table 5.1. For Γ = 1 the flow is
clearly in the SRS, as indicated by S̄m ≥ 0.65. For Γ = 1/2 the SRS is less dominant,
in particular for the large Prandtl number case Pr = 6.4, where the SRS hardly occurs.
This confirms our conclusions of the previous section where we stated that the SRS
is not always present in the Γ = 1/2 sample.

Another method used in the literature [98, 170] to identify the flow pattern is
to average the azimuthal profile with respect to the LSC orientation. This method
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Figure 5.13: a) The relative strength of the LSC S̄k versus the relative noise level 〈 f 2〉1/2/Acos, calcu-
lated from the stochastic model (equation (5.3)). For strong noise S̄k < 0.5 and the SRS is defined to
break down. b) The azimuthal vertical velocity profile after averaging with respect to the orientation of
the LSC, which was obtained using a cosine fit, is indicated by the dots. The method has been applied to
the data of all 64 probes in the horizontal midplane obtained in the simulation at Pr = 6.4, Ra= 1×108,
and Γ = 1/2. The solid line indicates a pure cosine profile.

assumes that the deviations from the cosine fit are due to turbulent fluctuations. It
will work for cases for which S̄m is large. However, when S̄m is low, this method gives
misleading results as is shown in figure 5.13b where we apply it to above discussed
data for Pr = 6.4 in the Γ = 1/2 sample, where the relative LSC strength using the
data of all 64 probes in the horizontal level is S̄m = 0.27 (see table 5.1): The average
profile obtained with the method of refs. [98, 170] cannot be distinguished from the
ones obtained from the cases where S̄m is larger and therefore the method cannot be
used to claim the dominance of the SRS.

5.7 Time resolved relative LSC strength

The relative LSC strength can also be calculated on instantaneous azimuthal temper-
ature and vertical velocity profiles. We demonstrate this by constructing the PDF of
the relative LSC strength at midheight Sm(t) for instantaneous azimuthal temperature
and vertical velocity profiles using the definition

Sm(t) =
(

E1(t)
Etot(t)

− 1
N

)
/

(
1− 1

N

)
. (5.4)

The only difference with respect to equation (5.2) is that E1(t) and Etot(t) and thus
Sm(t) are time dependent and that we have dropped the criterion that the minimal
value should be 0. The reason for the latter is that we want to prevent strange jumps in
the PDFs of Sm at 0. For N = 8 probes we have−1

3 ≤ Sm(t)≤ 1 and for N = 64 probes
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Figure 5.14: PDFs of the relative LSC strength at midheight for Ra = 1×108, Pr = 6.4, and Γ = 0.5.
The red (− 1

3 ≤ Sm(t) ≤ 1) and blue (− 1
31 ≤ Sm(t) ≤ 1) data points indicate the PDF based on the

azimuthal vertical velocity profile sampled with only 8 and all 64 probes, respectively. The colored
dashed lines give the corresponding PDFs based on a purely random signal. The vertical dashed lines
at Sm = 0.5 indicates the region 0.5≤ Sm ≤ 1.0 where the first Fourier modes contains at least 50% of
the energy of the azimuthal vertical velocity profile.

we have− 1
31 ≤ Sm(t)≤ 1. Note that these intervals follow directly from equation 5.4

by filling in the limiting cases, i.e. E1(t)/Etot(t) = 0 and E1(t)/Etot(t) = 1, and by
using the relation N = np/2, where np is the number of probes, see previous section.

Figure 5.14 shows the PDFs for Sm based on the measurement of the vertical
velocity by only 8 or all 64 equally spaced probes at midheight in the simulation with
Ra = 1× 108, Pr = 6.4, and in the Γ = 0.5 sample. In addition, for both cases we
determined the distribution of Sm(t) for a random signal. When we compare the PDFs
based on the simulation data with the distributions obtained for random signals, we
see that the difference is relatively small when the data of only 8 probes is considered,
whereas a much larger difference is obtained when the data of all 64 probes is taken
into account. Figure 5.14 thus clearly shows that it can be beneficial to use more
than 8 azimuthally equally spaced probes, since it becomes much easier to show that
certain events are statistically relevant.
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5.8 Conclusions

We studied the LSC dynamics in DNS simulations by investigating the azimuthal
temperature and vertical velocity profiles obtained from 64 equally spaced numerical
probes at three different heights. For Pr = 6.4 in a Γ = 1 sample we find that the
azimuthal profile is well presented with the data of 8 numerical probes, a number
normally used in experiments, as the LSC orientation obtained by a cosine fit is the
same when the data of 8 and 64 probes is considered. We find that the improved
azimuthal resolution (64 instead of 8 probes in the sidewall at one height) can reveal
the effect of the plumes.

In agreement with the findings of Xi and Xia [160] and Weiss and Ahlers [170]
we find that there is more disorder present in the Γ = 1/2 sample than in the Γ = 1
sample. For the Γ = 1/2 case we also show that when the azimuthal temperature
profile is only determined from 8 probes per horizontal level a SRS can erroneously
be identified as a DRS, because the azimuthal resolution is too small to distinguish
between the structure of the corner flow and the main roll. Here we again stress
that this result is obtained in the relatively low Ra number regime. The experimental
results of Weiss & Ahlers [170] show that for the low Ra number regime the flow
state is undefined for about 50% of the time. For Γ = 1/2 the SRS only establishes
itself for higher Ra, where the flow state is much better defined [170]. It is therefore
likely that the examples presented here are primarily important in this low Ra number
regime investigated here and are much less common in the higher Ra number regime.

We quantified the LSC strength relative to the turbulent fluctuations by determin-
ing the ratio between the energy in the first Fourier mode and the energy in all Fourier
modes of the azimuthal temperature and azimuthal vertical velocity profiles. We find
that the relative LSC strength at Ra = 1× 108 is considerably lower in the Γ = 1/2
sample than in the Γ = 1 sample, i.e. that the SRS is much less pronounced in the
Γ = 1/2 sample than in the Γ = 1 sample. This determination of the relative LSC
strength can be applied directly to available experimental data to determine whether
the SRS is present in high Ra number thermal convection and in rotating RB convec-
tion.
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Rotating Rayleigh-Bénard
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6
Prandtl-, Rayleigh-, and Rossby-number

dependence of heat transport ∗ †

Experimental and numerical data for the heat transfer as a function of the Rayleigh-,
Prandtl-, and Rossby numbers in turbulent rotating Rayleigh-Bénard convection are
presented. For relatively small Ra ≈ 108 and large Pr modest rotation can enhance
the heat transfer by up to 30%. At larger Ra there is less heat-transfer enhancement,
and at small Pr . 0.7 there is no heat-transfer enhancement at all. We suggest that
the small-Pr behavior is due to the breakdown of the heat-transfer-enhancing Ekman
pumping because of larger thermal diffusion.

6.1 Introduction

In the present chapter we determine systematically as a function of the Rayleigh num-
ber Ra, Prandtl number Pr, and Rossby number Ro where the heat-flux enhancement
occurs in rotating RB. We present both experimental measurements and results from
direct numerical simulation (DNS). They cover different but overlapping parameter
ranges and thus complement each other. Where they overlap they agree very well.
We find that in certain regimes the heat-flux enhancement can be as large as 30%;

∗Based on: J.Q. Zhong, R.J.A.M. Stevens, H.J.H. Clercx, R. Verzicco, D. Lohse, and G.
Ahlers, Prandtl-, Rayleigh-, and Rossby-Number Dependence of Heat Transport in Turbulent Rotat-
ing Rayleigh-Bénard Convection, Phys. Rev. Lett. 102, 044502 (2009).

†The experiments discussed in this chapter were performed by J.Q. Zhong and G. Ahlers in Santa
Barbara.
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Figure 6.1: The ratio of the Nusselt number Nu(Ω) in the presence of rotation to Nu(Ω = 0) for
Pr = 4.38 (Tm = 40.00◦C). (a): Results as a function of the rotation rate in rad/sec. (b): The same
results as a function of the Rossby number Ro on a logarithmic scale. Red solid circles: Ra = 5.6×108

(∆ = 1.00 K). Black open circles: Ra = 1.2×109 (∆ = 2.00 K). Purple solid squares: Ra = 2.2×109

(∆= 4.00 K). Blue open squares: Ra= 8.9×109 (∆= 16.00 K). Green solid diamonds: Ra= 1.8×1010

(∆ = 32.00 K)

this raises the possibility of relevance in industrial processes. Even more remarkably,
we observe a heretofore unanticipated strong dependence of this enhancement on Pr
as well as on Ra.

6.2 Experimental measurements

The convection apparatus was described in detail as the ”medium sample” in Ref.
[175]. Since the previous measurements [176] it had been completely dis- and re-
assembled. It had copper top and bottom plates, and a new plexiglas side wall
of thickness 0.32 cm was installed for the current project. The sample had a di-
ameter D = 24.8 cm and a height L = 24.8 cm, yielding Γ = 1.00. The appara-
tus was mounted on a rotating table. We used rotation rates up to 0.3 Hz. Thus
the Froude number Fr = Ω2(L/2)/g did not exceed 0.05, indicating that centrifu-
gal effects were small. Cooling water for the top plate and electrical leads were
brought into and out of the rotating frame using Dynamic Sealing Technologies
feed-throughs mounted on the rotation axis above the apparatus. All measurements
were made at constant imposed ∆ and Ω, and fluid properties were evaluated at
Tm = (Tt +Tb)/2. Data were taken at 60.00◦C (Pr = 3.05, tv = L2/ν = 1.27× 105

sec), 40.00◦C (Pr = 4.38, tv = 9.19×104 sec), 24.00◦C (Pr = 6.26, tv = 6.69×104

sec) and 23.00◦C (Pr = 6.41, tv = 6.56×104 sec). In a typical run the system was al-
lowed to equilibrate for three or four hours, and temperatures and heat currents were
then averaged over an additional three or four hours and used to calculate Ra and the
Nusselt number Nu = QL/(λ∆) (Q is the heat-current density).
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Figure 6.2: The ratio Nu(Ω)/Nu(Ω = 0) for Ra = 1.2×109 as function of Ro on a logarithmic scale.
Red solid circles: Pr = 3.05 (Tm = 60.00◦C). Black open circles: Pr = 4.38 (Tm = 40.00◦C). Purple
solid squares: Pr = 6.41 (Tm = 23.00◦C). Blue stars: Numerical simulation for Ra = 1.0× 109 and
Pr = 6.4 from Ref. [75].

Measurements of the Nusselt number without rotation, Nu(Ω = 0), over the range
5× 108 . Ra . 1010 (1 . ∆ . 20K) agreed within estimated systematic errors of
about 1% with previous results [176] obtained in the same apparatus. The ratio
Nu(Ω)/Nu(Ω = 0) is shown in Fig. 6.1a as a function of the rotation rate Ω. Those
results are for Tm = 40.00◦C, where Pr = 4.38. The enhancement of Nu due to mod-
est rotation is clearly seen at all Ra. It is larger at the smaller Ra.

In Fig. 6.1b we show the same data as a function of the Rossby number Ro. At
large Ro (small Ω) the data must approach unity, and indeed they do. As Ro decreases,
Nu is first enhanced, but then reaches a maximum and decreases as expected. The
maximum of Nu(Ω)/Nu(Ω = 0) occurs at larger Ro for larger Ra, and the value of
this ratio at the maximum diminishes with increasing Ra.

In Fig. 6.2 the results at constant Ra are shown as a function of Ro for several
values of Pr. Also shown are the DNS results from Ref. [75]; these data agree rather
well with the experimental data at nearly the same Pr and Ra. One sees that the
enhancement of Nu at large Ro is nearly independent of Pr; but as Ro decreases below
unity a strong Pr dependence manifests itself. As Ro decreases, the depression of Nu
sets in earlier for smaller Pr, and the maximal relative heat transfer enhancement is
smaller.
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Figure 6.3: The ratio Nu(Ω)/Nu(Ω = 0) as function of Ro on a logarithmic scale. Red solid circles:
Ra = 2.73× 108 and Pr = 6.26 (experiment). Black open circles: Ra = 2.73× 108 and Pr = 6.26
(DNS). Blue solid squares: Ra = 1× 109 and Pr = 6.4 (DNS) [75]. Red open squares: Ra = 1× 108

and Pr = 6.4 (DNS). Green open diamonds: Ra= 1×108 and Pr = 20 (DNS). Black stars: Ra= 1×108

and Pr = 0.7 (DNS).

6.3 Numerical simulations

In the DNS we solved the three-dimensional Navier-Stokes equations within the
Boussinesq approximation,

Du
Dt

= −∇P+

(
Pr
Ra

)1/2

∇
2u+θ ẑ− 1

Ro
ẑ×u, (6.1)

Dθ

Dt
=

1
(PrRa)1/2 ∇

2
θ , (6.2)

with ∇ ·u = 0. Here ẑ is the unit vector pointing in the opposite direction to gravity, u
the velocity vector, and θ the non-dimensional temperature, 0≤ θ ≤ 1. Finally, P is
the reduced pressure (separated from its hydrostatic contribution, but containing the
centripetal contributions): P = p−r2/(8Ro2), with r the distance to the rotation axis.
The equations have been made non-dimensional by using, next to L and ∆, the free-
fall velocity U =

√
βg∆L. The simulations presented in this chapter were performed

on a grid of 257×129×257 nodes, respectively, in the azimuthal, radial, and vertical
directions, allowing for a sufficient resolution of the small scales both inside the bulk
of turbulence and in the BLs (where the grid-point density has been enhanced) for the
parameters employed here [75, 90]. Nu is calculated as in chapter 2 and its statistical
convergence has been verified.
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Figure 6.4: (a) Numerical result for the ratio Nu(Ω)/Nu(0) as function of Pr for Ra = 108 and Ro =
1.0 (red open diamonds), Ro = 0.3 (black open circles), and Ro = 0.1 (blue open squares). (b) The
horizontally averaged vertical temperature gradient dθ/dz at the sample mid-plane as a function of Ro
for Ra = 1× 108. Blue open squares: Pr = 0.7. Red open circles: Pr = 6.4. Black open diamonds:
Pr = 20.

The numerical results for Nu as function of Ro for several Ra and Pr are shown
in Fig. 6.3. For Ra = 2.73× 108 and Pr = 6.26 experimental data (not previously
shown in Figs. 6.1 and 6.2) are plotted as well, showing near-perfect agreement with
the numerical results. This gives us confidence that the partial neglect of centrifugal
effects in the simulations [namely, neglecting the density dependence of the cen-
tripetal forces, which in the Boussinesq equations show up as −2Fr rθ r̂ [177] (with
the radial unit vector r̂ )] is justified, as already found in Refs. [75, 85], because
Fr� 1. Thus neither do the experimentally unavoidable finite conductivity of the
top and bottom plates [175, 178] and the side-wall conductivity [60, 179] seem to
matter in this regime of parameter space, as already explained in Ref. [20] for the
non-rotating case.

6.4 Simulation results

As was seen for the experimental data in Figs. 6.1 and 6.2, the numerical results in
Fig. 6.3 also reveal a drastic dependence of the Nusselt-number enhancement on Pr.
For large Pr & 6 the enhancement can be as large as 30% for Ra≈ 108 and Ro≈ 0.1.
However, there is no enhancement at all for small Pr . 0.7. This trend is further
elucidated in Fig. 6.4a, where we show the Nusselt-number enhancement as function
of Pr for three different Ro and Ra = 108.
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Figure 6.5: 3D visualization of the temperature isosurfaces at 0.65∆ (red) and 0.35∆ (blue), respec-
tively, for Pr = 0.7 (upper plot) and Pr = 6.4 (lower plot) for Ra = 108 and Ro = ∞ (left) Ro = 0.30
(right).

6.5 Influence of Rayleigh and Prandtl

Why does the heat-transfer enhancement through Ekman pumping at modest rotation
rates break down as Ro decreases below a Pr-dependent typical value, as seen in Figs.
6.1 to 6.3? To obtain a hint, we visualized (see Fig. 6.5) the three-dimensional tem-
perature iso-surfaces for Pr = 0.7 and for Pr = 6.4 at both Ro = 0.30 and Ro = ∞,
at Ra = 108. While for the larger Pr = 6.4 case the temperature iso-surfaces or-
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ganize to reveal long vertical vortices as suggested by the Ekman-pumping picture,
these structures are much shorter and broadened for the low Pr = 0.7 case, due to the
larger thermal diffusion which makes the Ekman pumping ineffective. This would
imply enhanced horizontal heat transport which should also lead to a steeper gradi-
ent of the mean temperature in the bulk. Indeed, in the DNS, we find that when Ro
becomes small enough, the bulk of the fluid displays an increasingly destabilizing
mean temperature gradient (see Fig. 6.4b), which of course must be accompanied by
a reduction of the mean temperature drop over the thermal BLs and thus a Nusselt-
number reduction. The first manifestation of the enhancement of the mean desta-
bilizing vertical temperature gradient agrees with the onset of relative heat-transfer
reduction in figure 6.3, and thus supports this explanation.

Along the same line of arguments one may also expect that the Ra dependence
of the reduction of Nu at small Ro seen in Fig. 6.1 is attributable to relatively less
effective Ekman pumping at higher Ra: The enhanced turbulence may lead to a larger
eddy thermal diffusivity, promoting a homogeneous mean temperature in the bulk.
Again this would make Ekman pumping relatively less effective and reduce the peak
in the relative Nusselt number.

6.6 Conclusions

Another interesting aspect of our data is that within our experimental or numerical
resolution there is no heat-flux enhancement for Ro & 2 for any Ra or Pr. As al-
ready noticeable from the data of Ref. [75], the heat-flux enhancement first becomes
resolved as Ro decreases below about two. This will be discussed in more detail in
chapters 8 and 9, where we show that with increasing rotation and large enough Ra a
supercritical bifurcation from a turbulent state with nearly rotation independent heat
transfer to another with enhanced heat transfer is observed. In the next chapter we
will first discuss the influence of the Pr number on the heat transfer enhancement in
more detail.





7
Optimal Prandtl number for heat transfer

enhancement ∗

Numerical data for the heat transfer as a function of the Prandtl (Pr) and Rossby (Ro)
numbers in turbulent rotating Rayleigh-Bénard convection are presented for Rayleigh
number Ra = 108. When Ro is fixed the heat transfer enhancement with respect to
the non-rotating value shows a maximum as function of Pr. This maximum is due
to the reduced effect of Ekman pumping when Pr becomes too small or too large.
When Pr becomes small, i.e. for large thermal diffusivity, the heat that is carried by
the vertical vortices spreads out in the middle of the cell, and Ekman pumping thus
becomes less effective. For higher Pr the thermal boundary layers (BLs) are thinner
than the kinetic BLs and therefore the Ekman vortices do not reach the thermal BL.
This means that the fluid that is sucked into the vertical vortices is colder than for
lower Pr which limits the upwards heat transfer.

7.1 Introduction

In the previous chapter it was shown that no heat-transfer enhancement is observed at
small Pr . 0.7. This was explained by the larger thermal diffusivity at lower Pr due
to which the heat that is carried by the vertical vortices created by Ekman pumping
spreads out in the middle of the cell. This leads to a larger destabilizing tempera-

∗Based on: R.J.A.M. Stevens, H.J.H. Clercx, and D. Lohse Optimal Prandtl number for heat transfer
enhancement in rotating turbulent Rayleigh-Bénard convection, New J. Phys. 12, 075005 (2010).
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Figure 7.1: The ratio Nu(Ω)/Nu(Ω = 0) as function of Ro on a logarithmic scale for Ra = 1× 108

and different Pr. Blue open circles: Pr = 0.7, red open squares: Pr = 6.4, and black open diamonds:
Pr = 20.

ture gradient in the bulk and a lower heat transfer. Furthermore, Ekman pumping
turned out to become less effective at higher Ra numbers where a larger eddy ther-
mal diffusivity limits the effect of Ekman pumping. In this chapter we systematically
determine the heat-transfer enhancement with respect to the non rotating value as
function of the Pr number by using DNS.

7.2 Numerical method

In the DNS we solved the three-dimensional Navier-Stokes equations within the
Boussinesq approximation. The numerical scheme was already described in Refs.
[107–109] and chapter 6. The numerical details concerning rotating RB convection
are described in detail in chapter 6. Most simulations were performed on a grid of
257×129×257 nodes, respectively, in the azimuthal, radial, and vertical directions,
allowing for a sufficient resolution of the small scales both inside the bulk of tur-
bulence and in the BLs (where the grid-point density has been enhanced) for the
parameters employed here, see chapter 6. Nu is calculated in several ways as de-
scribed in detail in chapter 2 and its statistical convergence has been checked. A grid
of 385×193×385 nodes has been used for the simulations at the highest Pr number
and to verify the results for Pr = 6.4 obtained on the coarser grid. Furthermore, for
the higher Pr number cases the flow is simulated for a very long time (400 dimen-
sionless time units to reach the statistically stationary state followed by 800 time units
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Figure 7.2: The heat transfer as function of Pr on a logarithmic scale for Ra = 1× 108. Black, red,
blue, and green indicate the results for Ro = ∞, Ro = 1.0, Ro = 0.3, and Ro = 0.1, respectively. The
data obtained on the 385×193×385 (open squares) and the 257×129×257 grid (solid circles) are in
very good agreement.

for averaging) to assure statistical convergence. In chapter 6 we already showed that
our DNS results agree very well with experimental results in this Ra number regime.

7.3 Two competing mechanisms

The numerical results for Nu(Ω)/Nu(0) as function of Ro for several Pr are shown
in figure 7.1. The figure shows that the heat transport enhancement caused by Ekman
pumping can be as large as 30% for Pr = 20. However, no heat transport enhance-
ment is found for Pr = 0.7 which is due to the larger thermal diffusivity which makes
Ekman pumping less effective, see chapter 6. In figure 7.1 one can already see that
the heat transfer enhancement reaches a maximum at a certain Pr when the Ro num-
ber is fixed. Indeed figure 7.2 confirms that the heat transfer enhancement as function
of Pr reaches a maximum. Its location depends on Ro; namely the stronger the rota-
tion rate the higher the Pr number for which the maximum heat transfer enhancement
is found. This trend is even more pronounced when the heat transfer Nu(Ro) itself is
considered.

The observation that there is a Pr number for which the heat transfer enhancement
is largest suggests that there should be at least two competing effects, which strongly
depend on the Pr number, that control the effect of Ekman pumping. One wonders
why Ekman pumping becomes less effective for higher Pr numbers. Clearly, it must
have a different origin than the reduced effect of Ekman pumping at lower Pr. Indeed,
there is an important difference between the high and the low Pr number regime,
namely the relation between the thickness of the thermal and the kinetic boundary
layers (BL). For the low Pr number regime the kinetic BL is thinner than the thermal
BL and therefore the fluid that is sucked into the vertical vortices is very hot. When
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(a)

(b)

Figure 7.3: a) Sketch for the low Pr number regime where the Ekman vortices reach the thermal BL.
b) Sketch for the high Pr number regime where the Ekman vortices do not reach the thermal BL.

the Pr number is too low this heat will spread out in the middle of the cell due to the
large thermal diffusivity. For somewhat higher Pr number the fluid that is sucked out
of the thermal BL is still sufficiently hot and due to the smaller thermal diffusivity
the heat can travel very far from the plate in the vertical vortices. In this way Ekman
pumping can increase the heat transfer for moderate Pr. In the high Pr number
regime the kinetic BL is much thicker than the thermal BL. Therefore the Ekman
vortices forming in the bulk do not reach the thermal BL and hence the temperature
of the fluid that enters the vertical vortices is much lower. This is schematically
shown in figure 7.3.

An investigation of the temperature isosurfaces in the previous chapter revealed
long vertical vortices as suggested by Ekman-pumping at Pr = 6.4, while these struc-
tures are much shorter and broadened for the Pr = 0.7 case due to the larger thermal
diffusivity at lower Pr (chapter 6). In figure 7.4 we show the temperature isosurfaces
at Ro = 0.30 for several Pr to identify the difference between the high and moderate
Pr number cases. The figure reveals that the vertical transport of hot (cold) fluid away
from the bottom (top) plate through the vertical vortex tubes is strongly reduced in
the high-Pr number regime compared to the case with Pr = 6.4. This is illustrated in
figure 7.4 where the threshold for the temperature isosurfaces is taken constant for all
cases. Indeed, a closer investigation shows that the vortical structures for the higher
Pr are approximately as long as for the Pr = 6.4 case. This confirms the view that
the temperature of the fluid that is sucked into the Ekman vortices decreases with
increasing Pr.
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Figure 7.4: 3D visualization of the temperature isosurfaces in the cylindrical sample of Γ = 1 at 0.65∆

(red) and 0.35∆ (blue), respectively, for Pr = 0.7 (left upper plot) and Pr = 6.4 (right upper plot),
Pr = 20 (left lower plot), and Pr = 55 (right lower plot) for Ra = 108 and Ro = 0.30. The snapshots
were taken in the respective statistically stationary regimes.

To further verify the above explanation we determined the horizontally aver-
aged temperature at the kinetic BL height, defined as two times the height where
ε”

u := u ·∇2u, see chapter 2 and 11 for details. This height is chosen as it indicates
the position where effects of Ekman pumping are dominant. Furthermore, we also de-
termined the horizontally averaged temperature at the edge of the radially dependent
thermal BL thickness, i.e. λ sl

θ
(r). We determined λ sl

θ
(r) by finding the intersection

point between the linear extrapolation of the temperature gradient at the plate with
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Figure 7.5: The horizontally averaged temperature at the edge of the kinetic BL (circles) and at the
edge of the thermal BL (squares) for Ra = 1× 108. a) Blue, Red, and black indicates the results for
Pr = 0.7, Pr = 6.4 and Pr = 20, respectively. b) Black, red, and blue indicate the results for Ro = ∞,
Ro = 0.3, and Ro = 0.1, respectively. The results for Ro = 1 (not shown) are almost identical to the data
obtained for Ro = ∞.

the behavior found in the bulk, see chapter 11. Indeed, figure 7.5 shows that the av-
erage temperature at the edge of the kinetic BL decreases with increasing Pr. Thus
the temperature of the fluid that enters the vertical vortices decreases with increasing
Pr and this limits the effect of Ekman pumping at higher Pr. Furthermore, the tem-
perature difference with respect to the bottom plate shows that for the non-rotating
case the kinetic BL is thinner than the thermal BL when Pr < 1 and thicker than the
thermal BL when Pr > 1. The figure shows that this transition point shifts towards
higher Pr when the rotation rate is increased. We note that in chapter 11 we find that
the kinetic BL thickness scales with Ro1/2, i.e. Ekman BL scaling, when Ro . 1.
Therefore the cases for Ro = 0.1 and Ro = 0.3, which are shown in figure 7.5, are in
the strong rotating regime where the kinetic BL thickness is approximately equal to
the Ekman BL thickness.

Another way to identify the effect of Ekman pumping is to look at the horizon-
tally averaged Rez,rms (dimensionless root mean square velocity of the axial velocity
fluctuations) value at the height λ sl

θ
(r), see chapter 8. An increase in the value of

Rez,rms shows that Ekman pumping becomes important. In figure 7.6b it is shown
that Ekman pumping is strongest for moderate Pr, because Rez,rms has a maximum
around Pr = 10. Note that the strength of the Ekman pumping measured in this way
reflects the measured Nu number enhancement. One can also deduce from figure
7.5 that the kinetic BL becomes thinner with respect to the thermal BL when the ro-
tation rate is increased, because the temperature difference with the plate becomes
smaller. Therefore more hot fluid is sucked into the vertical vortices and this further
supports the Ekman pumping effect for moderate rotation rates where the strongest
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Figure 7.6: The normalized horizontally averaged rms vertical velocities fluctuation Rez,rms at the edge
of the thermal BL for Ra = 1×108. a) Blue circles, red squares, and black diamonds indicate the data
for Pr = 0.7, Pr = 6.4, and Pr = 20, respectively. b) Black squares, red circles, and blue diamonds
indicate the data for Ro = ∞, Ro = 0.3, and Ro = 0.1, respectively.

heat transfer enhancement is observed. Furthermore, the maximum in the heat trans-
fer enhancement as shown in figure 7.1 occurs at lower Ro, i.e. stronger rotation,
for higher Pr. The breakdown of Nu at low Ro is an effect of the suppression of
vertical velocity fluctuations through the strong rotation, which is seen in figure 7.6a.
Moreover, in figure 7.6a it is shown that the vertical velocity fluctuations are sup-
pressed at higher Ro, i.e. lower rotation rate, when Pr is lower. Furthermore, at
low Ro there is experimental [74, 77] and numerical [91] evidence that the vertical
component of the vorticity at mid height becomes more symmetric. Near the plates
it is positively skewed for Ro & 0.5, which points at the input of positive vorticity
by Ekman pumping. For Ro . 0.3 there is a discrepancy between experimental and
numerical measurements of the skewness near the plates, i.e. experiments [74] show
that the vorticity distribution becomes more symmetric, while numerical results [91]
show a further increase of the positive skewness when Ro is decreased.

7.4 Conclusions

To summarize, we studied the Pr number dependence of the heat transport enhance-
ment in rotating RB convection and showed that at a fixed Ro number there is a
Pr number for which the heat transfer enhancement reaches a maximum. This is
because Ekman pumping, which is responsible for the heat transfer enhancement,
becomes less effective when the Pr number becomes too small or too large. At small
Pr numbers the effect of Ekman pumping is limited due to the large thermal diffu-
sivity due to which the heat that is sucked out of the BLs rapidly spreads out in the
bulk. At high Pr numbers the temperature of the fluid that is sucked into the vertical
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vortices near the bottom plate is much lower, because the thermal BL is much thinner
than the kinetic BL, and therefore the effect of Ekman pumping is lower. Further-
more, the rotation rate for which the heat transfer enhancement reaches its maximum
increases with increasing Pr, because the suppression of vertical velocity fluctuations
only becomes important at larger rotation rates for higher Pr.



8
Transitions between turbulent states ∗ †

Weakly-rotating turbulent Rayleigh-Bénard convection was studied experimentally
and numerically. With increasing rotation and large enough Rayleigh number a su-
percritical bifurcation from a turbulent state with nearly rotation-independent heat
transport to another with enhanced heat transfer is observed at a critical inverse
Rossby number 1/Roc ' 0.4. The strength of the large-scale convection-roll is either
enhanced or essentially unmodified depending on parameters for 1/Ro < 1/Roc, but
the strength increasingly diminishes beyond 1/Roc where it competes with Ekman
vortices that cause vertical fluid transport and thus heat-transfer enhancement.

8.1 Introduction

Turbulence evolves either through a sequence of bifurcations, possibly passing through
periodic and chaotic states [180] as in Rayleigh-Bénard (RB) convection [4] when the
Rayleigh number Ra is increased, or through subcritical bifurcations [181] as in pipe
or Couette flow. Once the flow is turbulent, it usually is characterized by large ran-
dom fluctuations in space and time and by a loss of temporal and spatial coherence.
For the turbulent state common wisdom is that the large fluctuations assure that the
phase-space is always fully explored by the dynamics, and that transitions between

∗Based on: R.J.A.M. Stevens, J.Q. Zhong, H.J.H. Clercx, G. Ahlers, and D. Lohse, Transitions
between Turbulent States in Rotating Rayleigh-Bénard Convection, Phys. Rev. Lett. 103, 024503
(2009).

†The experiments discussed in this chapter were performed by J.Q. Zhong and G, Ahlers in Santa
Barbara.
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Figure 8.1: a) The ratio Nu(Ω)/Nu(Ω = 0) as function of 1/Ro for Ra = 4× 107 and Pr = 6.26.
Open black squares indicate the numerical results. The numerical error is approximately 0.2% which
is indicated by the size of the symbols. b) The thickness of the kinematic top and bottom BLs based
on the maximum rms azimuthal (upper symbols: black open circles (red open squares) for top (bottom)
BL) and radial (lower symbols: green open diamonds (blue open squares) for top (bottom) BL) velocity
fluctuations. The vertical dashed lines in both graphs represent 1/Roc and indicates the transition in
boundary-layer character from Prandtl-Blasius (left) to Ekman (right) behavior.

potentially different states that might be explored as a control parameter is changed
are washed out.

Contrary to the above, we show that sharp transitions between distinct turbulent
states can occur in rotating RB convection. At relatively small Ra where the turbu-
lence is not yet fully developed, we find that the system evolves smoothly as 1/Ro is
increased. However, when Ra is larger and the turbulent state of the non-rotating sys-
tem is well established ‡ , we find that sharp transitions between different turbulent
states occur, with different heat-transfer properties and different flow organizations.
Sharp transitions between different states were reported also for turbulent flows in
liquid sodium [182, 183], where the increase of the magnetic Reynolds number be-
yond a certain threshold leads to bifurcations between different turbulent states of the
magnetic field. Sharp transitions between turbulent states are found also in the rotat-
ing von Karman experiment [184]. The transitions in RB convection are related to
boundary layer (BL) dynamics, whereas it is not known whether the transitions e.g.
in the dynamo experiment are affected by boundaries. The influence of a possible
transition between different states on the heat transport in RB convection is discussed
in the context of a theoretical model in Ref. [185]. We note that in our case we have
supercritical bifurcations, whereas all other cases are subcritical.

We present both experimental measurements and direct numerical simulations
(DNS) for a sample with diameter D equal to L. They cover different but overlapping

‡Ra/Rac & 103 for all of our data (Rac is the critical Ra number given by Ref. [1].
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parameter ranges and thus complement each other. Where they overlap they agree
very well. Without or with only weak rotation, it is known for this system that there
are thermal BLs just below the top and above the bottom plate, with a temperature
drop approximately equal to ∆/2 across each. The bulk of the system contains vigor-
ous fluctuations, and in the time average a large-scale circulation (LSC) that consists
of a single convection roll with up-flow and down-flow opposite each other and near
the side wall.

8.2 Experimental and numerical method

The numerical scheme was already described in refs. [75, 90, 107] and chapter 6. The
apparatus also is well documented, see (Ref. [175] and chapter 6) and here we give
only a few relevant details. The sample cell had D = L = 24.8 cm, with plexiglas side
walls of thickness 0.32 cm and copper top and bottom plates kept at temperatures Tt

and Tb, respectively. The fluid was water. Eight thermistors, labeled k = 0, . . . ,7,
were imbedded in small holes drilled horizontally from the outside into but not pen-
etrating the side wall [186]. They were equally spaced around the circumference at
the horizontal mid-plane (z = 0). A second and third set were located at z = −L/4
and z = L/4. Since the LSC carried warm (cold) fluid from the bottom (top) plate
up (down) the side wall, these thermistors detected the location of the upflow (down-
flow) of the LSC by indicating a relatively high (low) temperature. To determine the
orientation and strength of the LSC, we fit the function

Tf ,k(z = 0) = Tw,0 +δ0 cos(kπ/4−θ0); k = 0, . . . ,7 (8.1)

separately at each time step, to the eight temperature readings Tk(z = 0) obtained
from the thermistors at z = 0. Similarly we obtained θt , δt , and Tw,t for the top level
at z = L/4. At z = −L/4 only the mean temperature Tw,b was used in the current
work.

In chapter 6 we explored Nu as a function of Ra, Pr, and Ro in a large parame-
ter regime, ranging towards strong rotation (1/Ro� 1) and from small to large Pr.
Here we focus on Pr ≈ 4−7 (typical of water) and weak rotation (Ro & 1) to study
the transition from the non-rotating state at 1/Ro = 0 towards the rotating case for
different Ra.

8.3 Results

We start with numerical results for the relatively small Ra = 4× 107 which is not
accessible with the current experimental apparatus because L is too large. Those
simulations where done on a grid of 193× 65× 129 nodes in the azimuthal,radial,
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and vertical directions, respectively, allowing for a sufficient resolution of the small
scales both inside the bulk of turbulence and in the BLs adjacent to the bottom and
top plates where the grid-point density was enhanced [75, 90]. The small Ra allowed
for very long runs of 4000 dimensionless time units and thus excellent statistics. Fig.
8.1 shows the ratio of Nu(Ω) in the presence of rotation to Nu(Ω = 0) as function
of 1/Ro. This ratio increases rather smoothly with increasing rotation. For the larger
Ra = 2.73× 108 and Pr = 6.26 where the turbulence of the non-rotating system is
well developed, both numerical and experimental findings are very different. In Fig.
8.2 one sees that now there is a critical inverse Rossby number 1/Roc≈ 0.38 at which
the heat-transfer enhancement suddenly sets in. For weaker rotation the data are
consistent with no heat-transfer modification as compared to the non-rotating case.
The experimental and numerical data (now based on a resolution of 257×129×257,
see chapter 6) agree extremely well. In Ref. [75] data from DNS were reported on
the relative Nusselt number for Ra = 1× 109 and Pr = 6.4, which show a similar
transition also at 1/Roc ≈ 0.4.

The increase in Nusselt is thought to be due to the formation of the Ekman vortices
which align vertically and suck up (down) hot (cold) fluid from the lower (upper) BLs
(Ekman pumping) [68, 72, 74, 75, 77, 96] and chapter 6. This is supported by the
change in character of the kinetic BL near the bottom and top walls based on the
maximum root-mean-square (rms) velocity fluctuations in the azimuthal (and radial)
direction. For 1/Ro . 1/Roc the BL thickness (based on the rms azimuthal velocity
fluctuations) is roughly constant or even slightly increases. In contrast, for 1/Ro &
1/Roc it behaves according to Ekman’s theory and decreases with increasing rotation
rate, see Fig. 8.1b (1/Roc ≈ 0.5), and Fig. 8.2b (1/Roc ≈ 0.38), and see data for Ra =
1× 109 and Pr = 6.4 in Ref. [187]. The scaling with rotation rate is in agreement
with Ekman BL theory λu/L∼Ro1/2, whereas the constant BL thickness is consistent
with the presence of the LSC and the Prandtl-Blasius BL. Furthermore, the numerical
results in chapter 9 confirm the presence of Ekman vortices at the edge of the thermal
BL above onset which are not present below onset. Furthermore, particle image
velocimetry (PIV) measurements have also shown that vortices are present close to
the plates when rotation is applied [74, 96]. In addition these measurements show
that the number of vortices increases with the rotation rate.

To further characterize the flow field, we numerically calculated the rms velocity
fluctuations averaged over horizontal planes and over the entire volume, respectively.
For 1/Ro > 1/Roc the normalized (by the value without rotation) volume-averaged
vertical velocity fluctuations wrms strongly decrease, indicating that the LSC becomes
weaker, see Fig. 8.3. The decrease in normalized volume averaged vertical velocity
fluctuations coincides with a significant increase of the horizontal average at the
edge of the thermal BLs, indicating enhanced Ekman transport (see also Figs. 8.1b
and 8.2b). These averages provide additional support for the mechanism of the sud-
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Figure 8.2: a) Nu(Ω)/Nu(Ω = 0) for Ra = 2.73×108 and Pr = 6.26. Red solid circles: experimental
data (Tm = 24◦C and ∆ = 1.00K). Open black squares: numerical results. The experimental error
coincides approximately with the symbol size and the numerical error is approximately 0.5%. b) The
thickness of the kinematic top and bottom BLs based on the maximum rms azimuthal (upper symbols:
black open circles (red open squares) for top (bottom) BL) and radial (lower symbols: green open
diamonds (blue open squares) for top (bottom) BL) velocity fluctuations. For dashed vertical lines: see
Fig. 8.1.

den transition seen in Nu and indicate an abrupt change from a LSC-dominated flow
structure for 1/Ro < 1/Roc to a regime where Ekman pumping plays a progressively
important role as 1/Ro increases.

Our interpretation for the two regimes is as follows: Once the vertical vortices
organize so that Ekman pumping sucks in the detaching plumes from the BLs, those
plumes are no longer available to feed the LSC which consequently diminishes in
intensity. A transition between the two regimes should occur once the buoyancy
force, causing the LSC, and the Coriolis force, causing Ekman pumping, balance.
The ratio of the respective velocity scales is the Rossby number. For Ro� 1 the
buoyancy-driven LSC is dominant, whereas for Ro� 1 the Coriolis force and thus
Ekman pumping is stronger. The transition between the two regimes should occur at
Ro = O(1), consistent with the observed Roc ≈ 2.6.

One wonders of course why the transition between the two regimes is sudden
(in Nu) for Ra = 2.73× 108 and less abrupt for the smaller Ra = 4× 107 shown in
Fig. 8.1. We do not know the answer. We speculate that below onset at the lower
Ra the main effect is the thinning of the thermal BL through the rotation which is
less pronounced at larger Ra, as there the BL is already thinner anyhow, thanks to
the stronger LSC. The Nu vs. Ra scaling at a fixed Ro number changes due to the
transition, because Nu(Ω)/Nu(Ω = 0) decreases with increasing Ra as is shown in
chapter 6.

At even higher Ra = 9.0× 109 (where ∆ is larger and temperature amplitudes
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Figure 8.3: The normalized averaged rms vertical velocities fluctuations wrms for Ra = 4× 107 (left)
and Ra = 2.73× 108 (right) as function of 1/Ro. The black stars indicates the normalized volume
averaged value of wrms. The red open squares and the blue open diamonds indicate the normalized
horizontally averaged wrms at the edge of the thermal BL based on the slope at respectively the lower
and upper plate. The vertical dashed lines again indicate the position of 1/Roc.

can thus more easily be measured) and Pr = 4.38 an even more complex situation is
revealed, as seen in Fig. 8.4 (here DNS is not available because it would be too time
consuming). We find that now Nu(Ω)/Nu(Ω = 0) (Fig. 8.4a), after a slight increase,
first decreases, but these changes are only a small fraction of a percent. Then Nu
undergoes a sharp transition at 1/Roc,2 = 0.415 (vertical dotted line in Fig. 8.4a)
and beyond it increases due to Ekman pumping. Comparison with Figs. 8.1 and 8.2
shows that the transition of Nu is not strictly at a constant 1/Roc, but that Roc depends
weakly on Ra and/or Pr.

The LSC amplitudes δ0 and δt determined from fits of Eq. (8.1) to the sidewall-
thermometer readings are shown in Fig. 8.4b as solid symbols. Consistent with the
results reported in Ref. [186], δt < δ0 when there is no rotation (1/Ro = 0). This
inequality disappears as 1/Ro increases. Both amplitudes first increase by nearly
a factor of two. At 1/Roc,1 ' 0.337, where the two amplitudes have just become
equal to each other, they begin to decrease quite suddenly and remain equal to each
other up to the largest 1/Ro. The transition at 1/Roc,1 is indicated by the leftmost
vertical dotted line in Figs. 8.4b and c. At that point there also is a transition revealed
by the vertical temperature difference ∆Tw = 2× [Tw,b−Tw,t ] along the side wall as
seen in Fig. 8.4c which shows ∆Tw/∆ as a function of 1/Ro. Consistent with the
initially enhanced LSC amplitudes δ0 and δt , these results first show a reduction of
the thermal gradient as the LSC becomes more vigorous, but then reveal an increase
due to enhanced plume and/or vortex activity above 1/Roc,1.

Also of interest are the rms fluctuations δT/∆ = 〈[Tk(z = 0)−Tf ,k(z = 0)]2〉1/2/∆

about the fit of Eq. (8.1) to the temperature measurements at the horizontal midplane
(z= 0), and similarly at z= L/4. They are shown as open symbols in Fig. 8.4b. These
fluctuations begin to rise at 1/Roc,2 rather than at 1/Roc,1. Then they soon become
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Figure 8.4: Results for Ra = 9.0 × 109 and Pr = 4.38 (Tm = 40.00◦C, ∆ = 16.00 K). (a):
Nu(Ω)/Nu(Ω = 0) vs. 1/Ro. The error bar is smaller than the size of the symbols. (b): Solid
symbols: time-averaged LSC amplitudes 〈δ0〉/∆ (z = 0, circles) and 〈δt〉/∆ (z = L/4, squares) as a
function of 1/Ro. Open symbols: rms fluctuations about the cosine fit (Eq. 8.1) to the temperature data.
(c): Vertical temperature variation ∆Tw/∆ along the sidewall. (d): Circles: time-averaged normalized
sidewall-temperature profile 〈[T (θ)−Tw]/δ0〉 at the horizontal midplane for 1/Ro = 1 determined as
in [186]. Solid line: cos(Θ−Θ0).
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comparable to δ0 and δt , suggesting that the LSC becomes more and more hidden
in a fluctuating environment. Nonetheless, remnants of the LSC survive and can be
found when the fluctuations are averaged away, as shown in Fig. 8.4d. There we see
that even for 1/Ro = 1.0 the time average 〈(Tk(z = 0)− Tw,0)/δ0〉 of the deviation
from the mean temperature Tw,0 retains a near-perfect cosine shape.

8.4 Conclusions

From these measurements we infer that the establishment of the Ekman-pumping
mechanism is a three-stage process. First, up to 1/Roc,1, the time-averaged LSC
amplitudes, such as 〈δ0〉/∆, nearly double in value (see Fig. 8.4b) and thereby reduce
the vertical thermal gradient along the wall (see Fig. 8.4c). Beyond 1/Roc,1 there is
an enhanced accumulation of plumes and vortices, which coincides with an increase
of the BL thickness near onset as shown by the simulations at lower Ra (see insets
in Figs. 8.1 and 8.2). This accumulation detracts from the driving of the LSC but
the flow is not yet organized into effective Ekman vortices. This organization sets
in at 1/Roc,2, leads to Ekman pumping, and enhances Nu and reduces the strength
of the LSC as supported by the volume-average of wrms, see Fig. 8.3 (for lower Ra).
This sequence of events is altered as Ra (and presumably also Pr) is changed, but
it is remarkable that for fully developed turbulent RB convection sharp supercritical
bifurcations occur. In the next chapter we will show that this bifurcation is caused
by the limited horizontal extend of the system and that the rotation tay at which heat
transfer enhancement first sets in depends strongly on the aspect ratio of the system.



9
Finite-size effects lead to supercritical

bifurcations ∗ †

In turbulent thermal convection in cylindrical samples of aspect ratio Γ≡ D/L (D is
the diameter and L the height) the Nusselt number Nu is enhanced when the sample
is rotated about its vertical axis, because of the formation of Ekman vortices that
extract additional fluid out of thermal boundary layers at the top and bottom. We
show from experiments and direct numerical simulations that the enhancement oc-
curs only above a bifurcation point at a critical inverse Rossby number 1/Roc, with
1/Roc ∝ 1/Γ. We present a Ginzburg-Landau like model that explains the existence
of a bifurcation at finite 1/Roc as a finite-size effect. The model yields the propor-
tionality between 1/Roc and 1/Γ and is consistent with several other measured or
computed system properties.

9.1 Introduction

Turbulence, by virtue of its vigorous fluctuations, is expected to sample all of phase
space over wide parameter ranges. This viewpoint implies that there should not be
any bifurcations between different turbulent states. Contrary to this, several cases

∗Based on: S. Weiss, R.J.A.M. Stevens, J.-Q. Zhong, H.J.H. Clercx, D. Lohse, and G. Ahlers,
Finite-size effects lead to supercritical bifurcations in turbulent rotating Rayleigh-Bénard convection,
Phys. Rev. Lett. 105, 224501 (2010).

†The experimental results from Santa Barbara and the Ginzburg-Landau model discussed in this
chapter are from S. Weiss, J.-Q. Zhong, and G. Ahlers.
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of discontinuous transitions have been observed recently in turbulent systems [182–
184]. When they occur, they are likely to be provoked either by changes in boundary
conditions or boundary-layer structures, or by discontinuous changes in the large-
scale structures, as a parameter is varied.

In chapters 6-8 we discussed the effect of rotation on the heat transfer in Rayleigh-
Bénard convection. For a cylindrical sample of aspect ratio Γ ≡ D/L = 1.00 (D is
the diameter and L the height) a supercritical bifurcation was found, both from ex-
periments and from direct numerical simulation (DNS) of the Boussinesq equations
of motion. At a finite Ω, as expressed by the inverse Rossby number 1/Ro ∝ Ω, there
was a sharp transition from a state of nearly rotation-independent heat transport to
one in which Nu was enhanced by an amount δNu(1/Ro). This is illustrated by the
data shown in Fig. 9.1. The increase of Nu was attributed to Ekman pumping, see
Refs. [68, 72, 74, 76, 81, 85] and chapters 6-8, i.e. to the formation of (cyclonic)
vertical vortex tubes (“Ekman vortices”), which extract and vertically transport addi-
tional fluid from the boundary layers (BLs) and thereby enhance the heat transport.
The bifurcation was located at a critical value 1/Roc ' 0.40 (chapter 8). The reason
for the existence of the bifurcation at 1/Roc > 0 hitherto had not been understood.
While such bifurcations are common near the onset of RBC in the domain of pattern
formation [4], their existence in the turbulent regime implies a paradigm shift.

In this chapter we report on further experiments for samples with Γ = 2.00, 1.00,
and 0.50 which (i) all show bifurcations between different turbulent states and (ii)
reveal that 1/Roc varies approximately in proportion to 1/Γ. We offer an explanation
of these and other phenomena in terms of a phenomenological Ginzburg-Landau like
description which predicts a finite-size effect upon the vortex density A.

We assumed that the relative Nusselt enhancement δNu(1/Ro)/Nu(0) is propor-
tional to the average Ā of A over a horizontal cross section of the sample near the
BLs. Consistent with the DNS that we report here, we assumed that A vanishes at
the sample side wall. For the infinite system the model predicts that A, and thus
δNu/Nu(0), increases linearly from zero starting at 1/Ro = 0. For the finite system
the model gives a threshold shift proportional to 1/Γ as found in the experiment and
by DNS. The shift is predicted to be followed by a linear increase of Ā in proportion
to (1/Ro)− (1/Roc) which yields δNu/Nu(0) = S1(Γ)(1/Ro−1/Roc). The model
gives an initial slope S1(Γ) that decrease with decreasing Γ, again consistent with
DNS and measurements. From DNS we show that A decreases to zero near the side
wall over a length that is consistent with an estimate of a healing-length ξ based
on the model. Thus, we found consistency between the model predictions and all
properties that we were able to either measure or compute from DNS.



9.1. INTRODUCTION 113

1.00

1.02

1.04

1/Ro

1.00

1.02

1.04

N
u

(1
/R

o
) 

/ 
N

u
(0

)
N

u
(1

/R
o

) 
/ 

N
u

(0
)

(b)

(a)

0.1 1.0

1.00

1.04

1.08

(c)

N
u

(1
/R

o
) 

/ 
N

u
(0

)

0.2 1.0

1.00

1.05

1/Ro

Figure 9.1: The Nusselt number Nu(1/Ro), normalized by Nu(0) without rotation, as a function of the
inverse Rossby number 1/Ro. Data are from experiments unless mentioned otherwise. (a): Γ= 0.50 and
Pr = 4.38; Rayleigh numbers Ra= 9.0×109 (solid red circles), 1.8×1010 (open circles), and 3.6×1010

(solid squares). (b): Γ= 1.00. Main figure: Pr = 4.38, Ra= 2.25×109 (solid circles), 8.97×109 (open
circles), and 1.79× 1010 (solid squares). Inset: Pr = 6.26 and Ra = 2.73× 108. DNS: open squares.
Experiment: solid circles. (c): Γ = 2.00 and Pr = 4.38; the data are for Ra = 2.91×108 (open circles,
DNS; solid circles, experiment), 5.80× 108 (open squares), and 1.16× 109 (solid squares). Note the
different vertical scale for (c) compared to (a) and (b). The small vertical lines indicate the locations of
the bifurcation points.
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Figure 9.2: The critical inverse Rossby number 1/Roc as a function of the inverse aspect ratio 1/Γ for
Pr = 4.38 and different Ra (see Fig. 9.1). The line is a fit of a quadratic equation with the constant
coefficient set to zero.

9.2 Finite size effects

In Fig. 9.1 we show experimental and numerical data ‡ for Nu(1/Ro)/Nu(0) as a
function of 1/Ro for several values of Ra. From top to bottom the three panels are for
Γ = 0.50, 1.00, and 2.00, respectively §. One sees that there is considerable structure
even below the bifurcation, particularly at the larger Ra. To our knowledge the origin
of this structure is not known in detail. One sees that there are clear breaks in the
curves, e.g. for Γ = 1.00 (Fig. 9.1b) at 1/Ro ' 0.4, indicating the bifurcation to a
different state. The location of this transition is within our resolution independent of
Ra.

In Fig. 9.2 we plotted all available data for 1/Roc for Pr = 4.38 (and different Ra)
as a function of 1/Γ. The line shown there is a fit of

1
Roc

=
a
Γ

(
1+

b
Γ

)
(9.1)

to the data. Its coefficients are a = 0.381 and b = 0.061. One sees that the data are
consistent with an initial linear increase from zero of 1/Roc with 1/Γ, with a small
quadratic contribution becoming noticeable as 1/Γ becomes larger.

In order to understand the Γ dependence of 1/Roc, we studied the vortex statistics
using data obtained from DNS. We used the so-called Q-criterion [74, 91, 96, 188]
to determine the percentage Ā of the horizontal area that was covered by vortices.
Using this criterion, implies that the quantity Q2D, see Ref. [189] and section B,
which is a quadratic form of various velocity gradients, was calculated in a plane of

‡The numerical details of the simulations presented here are discussed in chapter 10
§Some of the data for Γ = 1.00 are already shown in chapter 6 and 8
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a) 

c) 

b) 

d) 

Figure 9.3: The vortices as identified by the Q2D criterion, see Ref. [189] and section B, for Ra =
2.73×108, Pr = 6.26, and Γ = 1. a) 1/Ro = 2/3, b) 1/Ro = 1, c) 1/Ro = 1.54, and d) 1/Ro = 3.33.
The vortex area increases with increasing 1/Ro. This trend is quantified in Fig. 9.4a.

fixed height. An area is then identified as “vortex” when Q2D <−0.1〈|Q2D|〉v, were
〈|Q2D|〉v is the volume-averaged value of the absolute values of Q2D, see appendix B.
The result of this procedure is shown for different 1/Ro in Fig. 9.3 for Pr = 6.26. In
Fig. 9.4 we plot Ā as a function of 1/Ro at the edge of the kinetic BL (which depends
on Ro, see chapter 11) and at the fixed distance 0.023L (the kinetic BL thickness
without rotation) from the plates. Although there is quite a bit of scatter, the data
are consistent with a linear increase of Ā for 1/Ro > 1/Roc, with a small constant
background Ā = A0 below 1/Roc. The azimuthally averaged vortex density 〈A〉φ is
given in Fig. 9.4b. It shows that the Ekman vortices are inhomogeneously distributed:
While in the bulk their fraction is roughly constant there are almost no vortices at all
close to the side wall, signaling a strong boundary effect.
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Figure 9.4: Vortex statistics for Ra = 2.73×108, Pr = 6.26, Γ = 1, and different Ro. a) Fraction Ā of a
horizontal slice covered with vortices at the edge of the kinetic BL (circles) and at a distance 0.023L (the
kinetic BL thickness without rotation, squares) from the plates as a function of 1/Ro for. The vertical
dashed line indicates the bifurcation point at 1/Roc and the horizontal dash-dotted line is a background
vorticity level Ā0 present even below 1/Roc. b) Azimuthal average 〈A〉φ (r/L) of the vortex density A
for 2.22 < 1/Ro < 3.33. In total, the statistics is based on 8 snapshots. The dashed line is the uniform
case. The density approaches zero close to the side wall.

9.3 Ginzburg-Landau model

In an effort to understand the existence of a finite onset (see Fig. 9.1) of the Ekman-
vortex formation and the dependence of the critical inverse Rossby number on Γ (see
Fig. 9.2), to elucidate the linear rise and initial slope of Nu(1/Ro) above onset (see
Fig. 9.1), and to explain the rapid decrease of 〈A〉φ (r/L) near the wall (see Fig. 9.4b),
we propose a phenomenological Ginzburg-Landau like model for the local vortex
density

Ȧ = (1/Ro2)A−gA3 +ξ
2
0 ∇

2A . (9.2)

Here Ȧ is the time derivative of A. We chose the coefficient of the linear term as
1/Ro2 because for the time independent infinitely extended spatially uniform system
it yields a stable solution A = g−1/2(1/Ro) which implies a vortex density propor-
tional to the rotation rate. The term with ∇2A represents the lowest-order term of
a gradient expansion since terms proportional to ∇A would lead to an unphysical
propagating mode.

When spatial variations are allowed, the ground state A = 0 can be shown to be
stable (i.e. to have a growth rate σ < 0) to disturbances with wave vector k when
1/Ro falls below a neutral curve given by

1/Ro0(k) = ξ0k . (9.3)

For the finite system it is necessary to introduce appropriate boundary conditions.
Here we shall consider a one-dimensional system over the range −Γ/2 ≤ x ≤ Γ/2
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for simplicity and illustrative purposes. The two-dimensional system with circular
boundaries and no azimuthal variation was treated in detail in Ref. [190] and yields
the same result for 1/Roc. Since there can be no vortices at the side wall of the
sample (see Fig. 9.4b where we verified this based on the numerical data), we chose
A(−Γ/2) = A(Γ/2) = 0. For the wave number k0 of the lowest mode this yields
k0 = π/Γ. This in turn gives

1
Roc
≡ 1

Ro0(k0)
=

πξ0

Γ
. (9.4)

Thus, consistent with the data in Fig. 9.2, the model yields the proportionality be-
tween 1/Roc and 1/Γ. We note that the curvature indicated by the quadratic contri-
bution to the fit Eq. 9.1 can be accommodated easily by higher-order gradient terms
in Eq. 9.2. Comparison with experiment (see Eq. 9.1) gives ξ0 = a/π = 0.121.

To elucidate the rapid decrease of 〈A〉φ (r/L) in Fig. 9.4b near r/L = 0.5, we
consider Eq. 9.2 for a semi-infinite system over the range −∞ < x ≤ 0.5 with the
boundary condition A(x = 0.5) = 0. It yields the solution

A(x) = (Ro2g)−1/2 tanh((0.5− x)/ξ ) (9.5)

with
ξ =
√

2ξ0Ro. (9.6)

Thus, near the boundaries, the model predicts that the amplitude A(x) of the one-
dimensional model, and thus to a good approximation also the azimuthal average
〈A〉φ (r/L) in Fig. 9.4b, should “heal” to its bulk value over a length ξ . Using a
representative Ro ' 0.4 for Fig. 9.4b, we estimate from Eq. 9.6 that ξ ' 0.07. This
is roughly consistent with the rapid variation of 〈A〉φ (r/L) near r/L = 0.5 seen in
Fig. 9.4b.

Above the bifurcation the model yields [190]

Ā = g̃−1/2
( 1

Ro
− 1

Roc

)
. (9.7)

Thus
δNu

Nu(0)
= S1(Γ)

( 1
Ro
− 1

Roc

)
(9.8)

which is consistent with the data in Fig. 9.1. Numerical solutions of the amplitude
equation of Ref. [190] have shown that the re-normalized coefficient g̃ in Eq. 9.7 is
larger than g in Eq. 9.2. Thus, the initial slope of Ā above 1/Roc and S1(Γ) in Eq. 9.8
are reduced by the finite size of the system. The decrease of S1(Γ) with decreasing Γ

that can be seen in Fig. 9.1 is also consistent with the model.
At constant Γ, S1 depends slightly on the Prandtl number. This suggests that

the nonlinear coefficient g in Eq. 9.2, and thus g̃ in Eq. 9.7, is dependent on Pr.
Similarly, the bifurcation point 1/Roc depends slightly on Pr. This is accommodated
in the model Eq. 9.2 by a slightly Prandtl-dependent length scale ξ0.
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9.4 Conclusions

It remains to be seen whether the phenomena reported and explained here in terms
of a finite-size effect have analogies in bifurcations between turbulent states in other
systems [182–184]. The more general lesson which is learned is that the Ginzburg-
Landau approach, which has been so versatile to understand the spatio-temporal dy-
namics of patterns, can also be useful in understanding the remarkable bifurcations
between turbulent states.



10
Effect of aspect-ratio on vortex distribution

and heat transfer in rotating Rayleigh-Bénard
∗ †

Numerical and experimental data for the heat transfer as function of the Rossby num-
ber Ro in turbulent rotating Rayleigh-Bénard convection are presented for Prandtl
number Pr = 4.38 and Rayleigh number Ra = 2.91×108 up to Ra = 4.52×109. The
aspect ratio Γ≡D/L, where L is the height and D the diameter of the sample, is var-
ied between Γ = 0.5 and Γ = 2.0. Without rotation, where the aspect ratio influences
the global large scale circulation, we see a small aspect-ratio dependence in the Nus-
selt number for Ra = 2.91×108. However, for stronger rotation, i.e. 1/Ro� 1/Roc,
the heat transport becomes independent of the aspect-ratio. We interpret this finding
as follows: In the rotating regime the heat is mainly transported by vertically-aligned
vortices. Since the vertically-aligned vortices are local, the aspect ratio has a negli-
gible effect on the heat transport in the rotating regime. Indeed, a detailed analysis
of vortex statistics shows that the fraction of the horizontal area that is covered by
vortices is independent of the aspect ratio when 1/Ro� 1/Roc. In agreement with
the results of Weiss et al. (Phys. Rev. Lett., vol 105, 224501 (2010)) we find a vortex-
depleted area close to the sidewall. Here, we in addition show that there is also an

∗Based on: R.J.A.M. Stevens, J. Overkamp, D. Lohse, H.J.H. Clercx, Disappearance of aspect-ratio
dependence of heat transport with increasing rotation rate in turbulent Rayleigh-Bénard convection,
submitted to Phys. Rev. E (2011).

†A part of the experimental measurements discussed in this chapter are performed by J. Overkamp.
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area with enhanced vortex concentration next to the vortex-depleted edge region and
that the absolute widths of both regions are independent of the aspect ratio.

10.1 Introduction

As is shown by Refs. [80, 91, 93] and in chapters 6-9, three different regimes can
be identified in rotating RB convection. As function of increasing rotation rate one
first finds a regime without any heat transport enhancement at all in which the large
scale circulation (LSC) is still present (regime I). Zhong and Ahlers [80] showed that
– though the Nusselt number is unchanged in this regime – nonetheless various prop-
erties of the LSC do change with increasing rotation in this regime. Here we mention
the increase in the temperature amplitude of the LSC, the LSC precession (also ob-
served by Hart et al. [100] and Kunnen et al. [75]), the decrease of the temperature
gradient along the sidewall, and the increased frequency of cessations. The start of
regime II (moderate rotation) is indicated by the onset of heat transport enhancement
due to Ekman pumping as is discussed in chapters 8 and 9. When the rotation rate is
increased in regime II the heat transfer increases further until one arrives at regime III
(strong rotation), where the heat transfer starts to decrease. This decrease of the heat
transfer in regime III is due to the suppression of the vertical velocity fluctuations,
see Ref. [80]) and chapters 6 and 7.

Several experimental, see Refs. [72, 76, 78–80] and chapters 6,8,9, and numeri-
cal, see Refs. [75–77, 87–91], and chapters 6- 9, studies on rotating RB convection
have shown that in regime II the heat transport with respect to the non-rotating case
increases due to rotation. A detailed overview of the parameter ranges covered in the
different experiments can be found in the Ra−Pr−Ro phase diagram shown in fig-
ure 1 of chapter 11 and the Ra−Ro−Γ phase diagram shown in figure 10.1. The heat
transport enhancement in regime II is caused by Ekman pumping ([68, 72, 74–77, 80]
and chapters 6- 9 ).

In chapters 6 and 7 we used results from experiments and direct numerical sim-
ulations (DNS) in a Γ = 1 sample to study the influence of Ra and Pr on the effect
of Ekman pumping. It was found that at fixed Ro the effect of Ekman pumping is
largest, and thus the observed heat transport enhancement with respect to the non-
rotating case highest, at an intermediate Prandtl number. At lower Pr the effect of
Ekman pumping is reduced as more hot fluid that enters the vortices at the base
spreads out in the middle of the sample due to the large thermal diffusivity of the
fluid. At higher Pr the thermal BL becomes thinner with respect to the kinetic BL,
where the base of the vortices is formed, and hence the temperature of the fluid that
enters the vortices becomes lower. In addition, it was found that the effect of Ek-
man pumping is reduced for increasing Ra. This is because the turbulent viscosity
increases with increasing Ra, which means that more heat spreads out in the middle
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Figure 10.1: Phase diagram in Ra−Ro−Γ space for rotating RB convection with Pr = 4.38. The data
points indicate where Nu has been experimentally measured or numerically calculated in a cylindrical
sample with no-slip boundary conditions. The DNS data and the Eindhoven (EH) experiments are from
this chapter. The experimental results from Santa Barbara (SB) are from chapter 9 and Zhong and Ahlers
[80] for the Γ = 0.5 and Γ = 1.0, respectively. The EH experimental data focus on Γ > 1, but for one
case we also give the result for Γ = 1 for benchmarking with the earlier SB data. a) A three dimensional
view on the phase space (see also the movie 10.1 in the supplementary material [115]), b) Projection
on Γ−Ra phase space, c) Projection on 1/Ro−Γ phase space and, d) Projection on 1/Ro−Ra phase
space. We also refer to figure 1 of chapter 11 for a full representation of the Ra−Pr−Ro phase space
of rotating RB convection.
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of the sample. This explains why for the high Ra-number of Niemela et al. [81] no
heat transfer enhancement was found in the rotating case.

In chapter 9 we showed that the rotation rate at which the onset of heat transport
enhancement sets in (1/Roc) increases with decreasing aspect ratio due to finite size
effect. This means that the aspect ratio is an important parameter in rotating RB
convection. In this chapter we report on a systematic study of the influence of the
aspect ratio on heat transfer (enhancement) for moderate and strong rotation rates,
i.e., for 1/Ro� 1/Roc.

This chapter is organized as follows. The experimental setup that has been built at
the Fluid Dynamics Laboratory at Eindhoven University of Technology is discussed
in section 10.2. The design of this setup is closely based on the Santa Barbara de-
sign [175]. Subsequently we will discuss the numerical procedures that have been
followed. Where the experimental and simulation results overlap an excellent agree-
ment is found. Based on the numerical data we will show that for 1/Ro� 1/Roc

the Nusselt number is independent of the aspect ratio, while there are some visible
differences for the non-rotating case. The reason for this is that in the non-rotating
case there is a global flow organization, which can be influenced by the aspect ratio.
In the rotating regime vertically aligned vortices, in which most of the heat transport
takes place [101, 102], form the dominant feature of the flow. As this is a local effect
the heat transport in this regime does not depend on the aspect ratio. In the last part
of the chapter we will analyze the vortex statistics for the different aspect ratios to
support that the vortices are indeed a local phenomenon.

10.2 Experimental setup

Based on the setup described by Brown et al. [175] we have built a new RB setup
in Eindhoven, which is suitable for high precision heat transport measurements. The
convection cell has a diameter D of 250 mm. The modular design of the setup pro-
vides the ability to adjust the height of the convection cell. Here we will present
measurements for Γ = 1, Γ = 4/3, and Γ = 2 During rotating experiments the RB
cell is placed on the Eindhoven Rotating Table Facility (RTF) (for details, see Ref.
[191]). A rotating connection is available for coolant fluid, with separated in and out
flow tubes. The rotation rate Ω of the RTF can be controlled from 0 to 10 rad/s with a
resolution of 0.001 rad/s and a relative accuracy of 0.5%. The rotation rates were kept
below Ω = 1.57 rad/s, yielding Froude numbers Fr = Ω2(D/2)/g less than 0.03 for
all runs and much smaller for most. This means that the effect of centrifugal forces
can be considered negligible.

A schematic diagram of the RB cell is shown in figure 10.2. From bottom to top,
we first find the support plate A (400 x 400 mm aluminium), used to mount the setup
on the RTF and to align the rotational axes of the table and the convection cell so that
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Figure 10.2: Schematic diagram (not to scale) of the Eindhoven RB apparatus. From bottom to top the
figure shows the support plate (A), an insulation layer (B), the bottom adiabatic shield (C), an insulation
layer (D), the bottom copper plate (E), the Plexiglas sidewall (F), the adiabatic side shield (G), the top
copper plate (H), and the Plexiglas top plate (I). See further details in the text.

the offset of the cylinder axis and the rotation axis is less than 0.1 mm. Next, part
B is a 10 mm insulation layer to prevent heat loss of the bottom adiabatic shield C
(310 mm outer diameter, 10 mm thick aluminium) to the support plate. The shield
is fitted with a 250 W heater to actively control its temperature. Inside this adiabatic
shield, part D is another 10 mm insulation layer, followed by the copper bottom plate
E (270 mm outer diameter, 30 mm thick) of the convection cell. The back of the
bottom plate is covered uniformly with two double spiral grooves of 2 mm depth, 2
mm width and 6 mm spacing. Two 4 m, 12.3 Ω resistance wires are epoxied into
these grooves. From the back of the plate, five small holes (one at the centre, two at
a radius of 98 mm and two at 100 mm, i.e. in the space that is available between the
heater wires that are placed inside the plate) are drilled to within 0.7 mm of its top
surface and thermistors are mounted in these holes.

On top of the bottom plate, the Plexiglas sidewall F with an inner diameter of 250
mm is placed. The thickness of the Plexiglas sidewall is 10 mm to provide enough
strength in strongly rotating RB experiments. A rubber O-ring seals the interface
between the bottom plate and the sidewall and prevents any leakage of fluid. The
sidewall contains a fluid inlet near the bottom plate and, at opposite angular position,
an outlet adjacent to the top plate. Care has been taken to avoid the entrapment of air
in the convection cell, both when filling the cell and when heating the fluid. The side-
wall is surrounded by an adiabatic side shield G made of two 3 mm thick aluminium
plates. The shield is actively temperature controlled, ensuring that its temperature is
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always close to the mean temperature of the system. Additional insulation is present
between the Plexiglas side wall and the aluminium side shield.

The top of the convection cell is formed by the copper top plate H, which has
similar dimensions as the bottom plate. The top plate contains a double spiral water
channel of 8 mm width, 26 mm depth and 25 mm spacing. The water, coming from a
refrigerated circulator (Thermo Scientific HAAKE DC50-K41) at 12.5 L/min, cools
the top plate down to the desired temperature. From the top of the plate, five small
holes (one at the centre, four at a radius of 100 mm) were drilled to within 0.7 mm of
the copper-fluid interface and thermistors are mounted in these holes. The top plate
is covered by a Plexiglas top I and the water channel is sealed with a rubber ring. The
visual access provides a way to check the proper operation of the cooling system.
An aluminium construction ring is connected to the upper side of the top plate. It
is supported by 6 stainless steel support poles. With these poles, the RB cell can be
fixed to achieve a fully watertight connection between the plates and the sidewall. To
decrease the effects of air convection near the convection cell, the entire construction
is placed in a wooden box covered with a 40 mm insulating layer on the inside.

The apparatus contains 40 thermistors, which were calibrated simultaneously in a
separate apparatus against a laboratory standard. During the calibration procedure all
thermistors and the laboratory standard are placed in an extremely well temperature-
controlled batch (temperature differences less than 0.002 K) to determine the resis-
tance at a set of known temperatures. From this calibration data fits were made with
5-th order logarithmic polynomials to calculate temperature values from 3-wire re-
sistance measurements. Deviations from these fits are generally less than 0.001 K.
During the calibration procedure all thermistors are connected to the same software
and hardware as in the real experiments. 24 of these thermistors are placed in the
sidewall, forming 3 rings of 8 equally spaced sensors at heights 0.25L, 0.5L and
0.75L. Both the top and bottom plate contain 5 sensors to monitor the temperature
of the plate. The remaining sensors are used to control the temperature of the bottom
adiabatic shield and of the insulation around the Plexiglas sidewall. Readings of all
thermometer resistances and of the bottom plate heater current and heater voltage
were taken every second. The top (bottom) temperature Tt (Tb) was set equal to the
area average of the five thermometers embedded in the top (bottom) plate. For any
given data point, measurements over typically the first four hours were discarded to
avoid transients, and data taken over an additional period of at least another eight
hours were averaged to get the heat-current density Q, and the temperatures Tb and
Tt . Because of the imperfect temperature uniformity of the bottom shield there was a
small parasitic heat loss from the bottom plate of about 0.1 W, which was determined
by measuring the required power to keep the bottom and top plate at 40◦C, a mea-
surement which takes two days. For each measurement this parasitic heat loss was
subtracted from the measured power.
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In addition various heat transport measurements on rotating RB convection were
performed in the group of Guenter Ahlers in Santa Barbara, see also chapter 6 and
8. These measurements were done in an aspect ratio Γ = 1 sample and cover the Ra
number range 3×108 . Ra . 2×1010, the Pr number range 3.0 . Pr . 6.4, and the
1/Ro number range 0 . 1/Ro . 20. These data points are shown in the Ra−Ro−Γ

phase diagram for rotating RB shown in figure 10.1. The experimental procedure that
has been used in these experiments is described in detail by Zhong and Ahlers [80].
All the Nusselt number measurements of Zhong and Ahlers [80] were documented in
the accompanying supplementary material of that paper, and we use those data in our
figures here. Recently, Weiss & Ahlers [192] did similar measurements in an aspect
ratio Γ = 0.5 sample. As these measurement data are not yet available in the open
literature we do not include a comparison with their data.

Zhong and Ahlers [80] restricted themselves to aspect ratio Γ = 1. In this chapter
we present new heat transport measurements from the Eindhoven RB setup, which is
based on the Santa Barbara design [80, 175], for aspect ratio Γ = 4/3 and Γ = 2.0.
We also present some Γ = 1.0 measurements from the Eindhoven setup, (i) because
this particular Ra number was not available in the Santa Barbara (SB) data set of
Zhong and Ahlers [80] and we wanted to compare the results with those for Γ = 4/3
and Γ= 2 at the same Ra, (ii) because we want to compare with the simulation results
which are restricted to small Ra, and (iii) because we wanted to benchmark the results
of our new setup against those of the SB setup. Recently, Weiss & Ahlers [192] did
similar measurements in an aspect ratio Γ = 0.5 sample. As these measurement data
are not yet available in the open literature we do not include a comparison with their
data.

The Eindhoven measurements have been verified against the experiments of Fun-
fschilling et al. [176] and the SB measurements presented in chapter 6 and 8. For
the present measurements the difference is in the order of 1%, well within the dif-
ferences observed between different RB setups [20]. In figure 10.3 we show the
heat transfer enhancement Nu(Ω)/Nu(0) as function of the rotation rate 1/Ro for
Ra = 2.99× 108, Ra = 5.88× 108 and Ra = 1.16× 109 at Pr = 4.38, which cor-
responds with a mean temperature of the fluid of 40.00◦C, and compare them with
the SB heat transport measurements reported in chapter 6 and 8. Perfect agreement
between the two datasets is found.

Presently, the Eindhoven experiments can only be performed with one type of
plate material (copper) and not with more as done in Santa Barbara. For this reason
we can not apply the plate corrections to obtain the absolute Nusselt number without
making some assumptions that cannot be verified at the moment. Therefore for the
experimental results we restrict ourself to relative Nusselt numbers Nu(1/Ro)/Nu(0).
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Figure 10.3: The ratio of the Nusselt number Nu(1/Ro) in the presence of rotation to Nu(0) for Pr =
4.38 (Tm = 40.00◦C) and Γ = 1. The solid circles are the data obtained in the Eindhoven RB setup and
the open squares are the corresponding data obtained in Santa Barbara, see also chapter 6 and 8. Black
solid circles: Ra = 2.99× 108 (∆ = 0.50 K). Red solid circles: Ra = 5.88× 108 (∆ = 1.00 K). Blue
solid circles: Ra = 1.16×109 (∆ = 2.00 K). Red open squares: Ra = 5.6×108 (∆ = 1.00 K, run E4 in
Zhong &Ahlers [80]). Blue open squares: Ra = 1.2×109 (∆ = 2.00 K, run E5 in Zhong &Ahlers [80]).

10.3 Numerical procedure

In the simulations the flow characteristics of rotating RB convection for Ra = 2.91×
108− 4.52× 109, Pr = 4.38, 0 < 1/Ro < 12.5, and 0.5 < Γ < 2.0, see also table
10.1 and figure 10.1, are obtained from solving the three-dimensional Navier-Stokes
equations within the Boussinesq approximation. Details about the numerical proce-
dure can be found in Refs. [107–109] and in chapter 6.

The resolutions used for the simulations are summarized in table 10.1. These grids
allow for a very good resolution of the small scales both inside the bulk of turbulence
and in the BLs where the grid-point density has been enhanced. We checked this
by calculating the convergence of the volume averaged kinetic εu and thermal εθ

dissipation rates as is proposed in chapter 2. We find that these quantities always
converge within a 5% margin at most. A comparison with the results of chapter 2
shows that this convergence rate is clearly sufficient to reliably calculate the heat
transfer. As argued in chapter 4 it is especially important to properly resolve the BLs.
According to equation (42) of that chapter the minimal number of nodes that should
be placed in the thermal BL is NBL = 4.7 (NBL = 7.1) when Ra = 2.91× 108 (Ra =
4.52×109) and Pr = 4.38. In the simulations at Ra = 2.91×108 (Ra = 4.52×109)
we placed NBL = 14 (NBL = 22) points in the thermal BL, which is on the safe side.
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Table 10.1: Simulations performed in this study. The columns from left to right indicate the following:
the Rayleigh number Ra, the aspect ratio Γ, the inverse Rossby number 1/Ro, the number of Ro cases
that is simulated (nRo), and the number of grid points in the azimuthal, radial, and axial directions
(Nθ ×Nr×Nz)

Ra Γ 1/Ro nRo Nθ ×Nr×Nz

2.91×108 0.5 0−12.5 16 257×97×289
4.52×109 0.5 0−12.5 18 641×161×641
2.91×108 1.0 0−12.5 16 385×193×289
5.80×108 1.0 0−5.0 3 641×193×385
2.91×108 2.0 0−12.5 18 769×385×289
5.80×108 2.0 0−5.0 2 1281×385×385

For the non-rotating case similar numbers are obtained for the grid point resolution
in the kinetic BL. When rotation is applied the kinetic BL becomes thinner. This
effect only becomes significant for the highest 1/Ro number cases considered here,
and we emphasize that for all cases the number of points in the kinetic BL is above
the criterion put forward in chapter 4. Furthermore, it is also very important to make
sure that the results are statistically converged. Again we use the methods introduced
in chapter 2 to check this. For all cases the convergence is in the order of 1% and it
is much better for most. For the simulations at Ra = 2.91× 108 in the aspect ratios
Γ = 0.5, Γ = 1.0, and Γ = 2.0 the average statistical uncertainty is only about 0.5%.

As last check we compare the numerical results with experimental data. For this
we use the data of the group of Guenter Ahlers, who did high precision heat transport
measurements in Γ = 0.5 [170], Γ = 1.0 [176], and Γ = 2.0 [176] samples. For all
cases we find that the numerical results are within 1% of these experimental data. For
some cases the numerical data of the present simulations are even slightly below the
experimental data. This is reassuring with respect to numerical resolution issues, as
normally the heat transport in underresolved simulation is larger than the actual heat
transport, see chapter 2.

In the simulations we partially neglect centrifugal forces, namely the density de-
pendence of the centripetal forces, which in the Boussinesq equations show up as
−2Fr rθ r̂, with the radial unit vector r̂ [177]. It is shown in chapter 6 and by Refs.
[75, 85] that this is justified for small Fr numbers. For all experiments in the Γ = 1
sample, where the Fr number is below 0.03 for all cases, this condition is fulfilled.
For the experiments in the Γ = 2 sample the Froude number is below 0.05 for all ex-
periments up to 1/Ro = 5. For higher 1/Ro the Froude number quickly increases up
to 0.12 for Ra = 2.91×108 and up to 0.49 for Ra = 1.16×109. For the experiments
at Ra = 2.91×108, for which the highest Fr number is 0.12, this does not influence
the results as we find a perfect agreement between the experimental and numerical
results, see figure 2c. The experimental results for higher Ra in the Γ = 2 sample,
where the Froude numbers are higher for the highest 1/Ro case, do not suggest a
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strong influence of this effect on the heat transport measurements. However, at the
moment we can not rule it out completely either.

We note that the simulations presented here are very CPU time intensive; about
1.5 million standard DEISA CPU hours have been used, due to the large aspect ratios,
the relatively high Ra numbers that are resolved with high resolution, the number
of different Ro number cases, and the long averaging times that are needed to get
sufficient statistical convergence. This puts this numerical study in the top three of
largest numerical RB studies, next to the high Rayleigh number studies presented in
chapters 2 and 3.

10.4 Results

In figure 10.4 the heat transport enhancement with respect to the non-rotating case
is shown for Γ = 0.5, Γ = 1, Γ = 4/3, and Γ = 2 and different Ra. Here we find
an excellent agreement between experimental and numerical results. The figure
shows that there is a strong heat transport enhancement due to Ekman pumping when
1/Ro > 1/Roc, where 1/Roc indicates the position of the onset of heat transport
enhancement (see chapters 8 and 9). The figure also shows that the heat transport en-
hancement decreases with increasing Ra. This is because the eddy thermal diffusivity
is larger at higher Ra and this causes the warm (cold) fluid that enters the base of the
vortices to spread out more quickly in the middle of the sample. This makes the effect
of Ekman pumping smaller and this results in a lower heat transport enhancement.
The breakdown of Nu at high 1/Ro is an effect of the suppression of vertical velocity
fluctuations through the strong rotation.

When the results for Γ = 0.5, Γ = 1, Γ = 4/3 and Γ = 2 are compared, they look
pretty similar on first sight, i.e. a strong heat transport enhancement when 1/Ro >
1/Roc and a heat transport reduction for very strong rotation rates. However, when
we look more closely we see that there are several important differences. First of
all 1/Roc, the rotation rate needed to get heat transport enhancement, increases with
decreasing aspect ratio. In chapter 9 we already observed this and explained it by
finite size effects. In addition a close comparison between the Γ = 1 and Γ = 2 data
in figure 10.4 shows that the heat transport enhancement is slightly larger in a Γ = 2
sample than in a Γ = 1 sample. This can be observed in more detail in figure 10.5,
where the relative heat transport enhancement at fixed Ra is compared for several
aspect ratios.

The absolute heat transfer shown in figure 10.6 is available only for the numerical
case, (as explained in section 2). From that figure we conclude that the heat transport
becomes independent of the aspect ratio once 1/Ro� 1/Roc, while there are some
visible differences for the non-rotating case. Also for Ra = 5.80×108 and 1/Ro = 5
we find that the difference in the heat transport between the Γ = 1 and the Γ = 2 case
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Figure 10.4: The ratio Nu(1/Ro)/Nu(0) as function of 1/Ro for different Ra for a) Γ = 0.5, b) Γ = 1,
c) Γ = 4/3, and d) Γ = 2. a) The results from the DNS at Ra = 2.91× 108, and Ra = 4.52× 109

are indicated by the black and magenta open squares, respectively. b) The experimental results for
Ra = 2.99× 108, Ra = 5.63× 108 (run E4 of Zhong & Ahlers [80]), and Ra = 1.13× 109 (run E5 of
Zhong & Ahlers [80]) are indicated in black, red, and blue solid circles, respectively. The DNS results
for Ra = 2.91× 108, and Ra = 5.80× 108 are indicated by black and red open squares, respectively.
c) The experimental results for Ra = 2.93× 108, Ra = 5.82× 108, and Ra = 1.16× 109 are indicated
in black, red, and blue solid circles, respectively. d) The experimental results for Ra = 2.91× 108,
Ra = 5.80× 108, and Ra = 1.16× 109 are indicated in black, red, and blue solid circles, respectively.
The DNS results for Ra = 2.91×108, and Ra = 5.80×108 are indicated by black and red open squares,
respectively. All presented data in this figure are for Pr = 4.38.

is smaller than for the non-rotating case. These small differences in the heat transport
for different aspect ratios were also found in the numerical study of Bailon-Cuba et al.
[171] and in experiments of Funfschilling et al. [176] and Sun et al. [152]. However,
the experimental and numerical results seem to suggest that this effect decreases with
increasing Ra.

For the non-rotating case the flow organizes globally in the large scale convection
roll. Because this global flow structure can depend on the aspect ratio, there can be
small variations in the Nusselt number as function of the aspect ratio. For strong
enough rotation, i.e. 1/Ro� 1/Roc, the global LSC is replaced by vertically-aligned
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Figure 10.5: The ratio Nu(1/Ro)/Nu(0) as function of 1/Ro for Ra ≈ 3× 108 and different Γ. The
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Figure 10.7: 3D visualization of the temperature isosurfaces in the cylindrical sample at 0.65∆ (red)
and 0.35∆ (blue), respectively for Ra = 2.91× 108, Pr = 4.38, 1/Ro = 3.33 and Γ = 0.5 (left upper
plot), Γ = 1.0 (right upper plot), and Γ = 2.0 (lower plot).

vortices as the dominant feature of the flow, see Refs. [85, 91] and chapters 6-9).
In this regime most of the heat transport takes place in vertically-aligned vortices
[101, 102]. Because the vortices are a local effect the influence of the aspect ratio
on the heat transport in the system should be negligible. This assumption is used in
several models [84, 101, 102], which consider a horizontally periodic domain, that
are developed to understand the heat transport in rotating turbulent convection.

To investigate this idea we made three-dimensional visualizations of the tempera-
ture isosurfaces at Ra = 2.91×108, Pr = 4.38, and 1/Ro = 3.33, for the different as-



132 CHAPTER 10. EFFECT OF ASPECT-RATIO ON VORTEX DISTRIBUTION

Figure 10.8: Visualization of the vertical velocity (left plot) and temperature (right plot) fields at the
kinetic BL height for Ra = 2.91×108, Pr = 4.38, 1/Ro = 3.33, and Γ = 2. Note that there is a strong
correlation between the areas where the strongest vertical velocity and highest temperatures are found,
namely in the vortices. Red and blue indicate upflowing (warm) and downflowing (cold) fluid in the
left (right) panel.

Figure 10.9: The vortices at the edge of the kinetic BL as identified by the Q2D criterion for Ra =
2.91×108, Pr = 4.38, 1/Ro = 3.33 and Γ = 0.5 (upper left plot), Γ = 1.0 (lower left plot), and Γ = 2.0
(right plot).
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Figure 10.10: Azimuthal average 〈A〉r/R of the vortex density A for Ra = 2.91× 108, Pr = 4.38,
3.33 < 1/Ro < 8.33 as function of r/R (panel a) and (R− r)/L (panel b) for different aspect ratios. The
solid black, blue, and red lines indicated the distribution for Γ = 0.5, Γ = 1.0, and Γ = 2.0. The dashed
lines indicate the average horizontal area covered by vortices. The data for each aspect ratio are based
on 12 snapshots.

pect ratios, see figure 10.7. Indeed the figures confirm that vertically-aligned vortices
are formed in all aspect-ratio samples. Furthermore, the figure reveals that a larger
number of vortices is formed in the Γ = 1 and Γ = 2 samples than in the Γ = 0.5
sample. This is expected, since these samples have a larger horizontal extension.

In order to reveal the structure of the flow in more detail we show the temperature
and vertical velocity fields at the kinetic BL height near the bottom plate for Ra =
2.91× 108, Pr = 4.38, 1/Ro = 3.33, and Γ = 2 in figure 10.8 . This figure clearly
shows that hot fluid is captured in the up-going vortices. Similar plots (not shown)
revealed that cold fluid near the top plate is captured in down going vortices. In
order to study the vortex statistics one needs to have a clear criterion of what exactly
constitutes a vortex. For this we use the so-called Q-criterion, see Refs. [74, 92,
96, 188], chapter 9 and appendix B. This criterion requires that the quantity Q2D

[193, 194], which is a quadratic form of various velocity gradients, is calculated in a
plane of fixed height. Here we always take the kinetic BL height. Following chapter 9
an area is identified as ”vortex” when Q2D <−〈|Q2D|〉v, were 〈|Q2D|〉v is the volume-
averaged value of the absolute values of Q2D. Here we have set the threshold for the
vortex detection more restrictive than in chapter 9 to make sure that only the strong
upgoing (downgoing) vortices are detected. However, we note that similar results are
obtained when a less restrictive threshold is used.

The result of this procedure for Ra = 2.91×108, 1/Ro = 3.33, and Γ = 0.5−2.0
is shown in figure 10.9. The figure shows that the vortices (both up and down going)
are in general randomly distributed. However, note that no vortices are formed close
to the sidewall. To quantify this we determined the radial distribution of the vortices
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from the plots shown in figure 10.9 and similar plots. The result is shown in figure
10.10. Figure 10.10a confirms that no vortices are formed close to the sidewall, while
in the bulk their fraction is roughly constant. Figure 10.10b shows that the size of the
region close to the sidewall where no vortices are formed is roughly independent of
the aspect ratio.

This is in agreement with the predication of Weiss & Ahlers [192] that is derived
from a phenomenological Ginzburg-Landau model. As detailed information about
the flow field is needed to determine the vortex distribution it is very hard to obtain
this data from experimental measurements [92]. In figure 10.10b one can see that
the vortex density in the region (R− r)/L . 0.015 decreases faster to zero than for
(R− r)/L & 0.015, which is due to the vortex detection method employed in this
study. More specifically, we detect only the core of the vortex. As the vortex core is
always formed some distance away from the wall this causes an (artificial) enhanced
decrease in the vortex density in the direct vicinity of the wall. The origin of the
peaks in the distribution function is similar to the origin of the peaks observed in pair
correlation functions of the distribution of hard disks.

However, and this is the main point here, one can see in figure 10.10 that the
fraction of the horizontal area that is covered by vortices, see the dashed lines in the
figure, is independent of the aspect ratio. This means that the vortices are indeed a lo-
cal effect. This observation supports our finding that the heat transport is independent
of the aspect ratio in the rotating regime. Based on the observation that less vortices
are formed close to the sidewalls, one would have expected that the vortex density
averaged over the whole area is higher for larger aspect ratio. The reason is that for
larger aspect ratio samples this vortex-depleted sidewall region is relatively smaller
than for smaller aspect ratio ones. However, just next to the vortex depletion region
we find a region where the vortex density is enhanced. As is shown in figure 10.10b,
the absolute width of this region seems to be rather independent of the aspect ratio of
the sample, too. Hence the effect of the vortex depletion and the vortex enhancement
region on the horizontally averaged vortex density cancel out in first order.

10.5 Conclusions

In summary, we investigate the effect of the aspect ratio on the heat transport in turbu-
lent rotating Rayleigh-Bénard convection by results obtained from experiments and
direct numerical simulations. We find that the heat transport in the rotating regime is
independent of the aspect ratio, although there are some visible differences in the heat
transport for the different aspect ratios in the non-rotating regime at Ra = 2.91×108.
This is because in the non-rotating regime the aspect ratio can influence the global
flow structure. However, in the rotating regime most heat transport takes place in
vertically-aligned vortices, which are a local effect. Based on the simulation results
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we find that the fraction of the horizontal area that is covered by the vortices is in-
dependent of the aspect ratio, which confirms that the vertically-aligned vortices are
indeed a local effect. This supports the simulation results, which show that the heat
transport becomes independent of the aspect ratio in the rotating regime. In addi-
tion, it confirms the main assumption that is used in most models, which consider
a horizontally periodic domain [84, 101, 102], that are developed to understand the
heat transport in rotating turbulent convection. The analysis of the vortex statistics
also revealed that the vortex concentration is reduced close to the sidewall, while
the distribution is nearly uniform in the center. In between these two regions, there
is a region of enhanced vortex concentration. The widths of both that region and
the vortex-depleted region close to the sidewall are independent of the aspect ratio.
This analysis highlights the value of numerical simulations in turbulence research:
The determination of the vortex distribution requires detailed knowledge of the flow
field and therefore it would have been very difficult to obtain this finding purely from
experimental measurements.





11
Boundary layers in rotating weakly turbulent

Rayleigh-Bénard ∗

The effect of rotation on the boundary layers (BLs) in a Rayleigh-Bénard (RB) system
at a relatively low Rayleigh number, i.e. Ra = 4×107, is studied for different Pr by
direct numerical simulations and the results are compared with laminar BL theory. In
this regime we find a smooth onset of the heat transfer enhancement as function of in-
creasing rotation rate. We study this regime in detail and introduce a model based on
the Grossmann-Lohse theory to describe the heat transfer enhancement as function
of the rotation rate for this relatively low Ra number regime and weak background
rotation Ro & 1. The smooth onset of heat transfer enhancement observed here is in
contrast to the sharp onset observed at larger Ra & 108 in chapter 8 and 9, although
only a small shift in the Ra−Ro−Pr phase space is involved.

11.1 Introduction

Normally the transition between different turbulent states is smooth, because the large
random fluctuations that characterize the turbulent flow make sure that the entire
phase space is explored and therefore the transitions between different states, that
are explored as a control parameter is changed, are washed out. For non-rotating RB
system the heat transport can satisfactory be described by the Grossmann-Lohse (GL)

∗Based on: R.J.A.M. Stevens, H.J.H. Clercx, and D. Lohse, Boundary layers in rotating weakly
turbulent Rayleigh-Bénard convection, Phys. Fluids, 22, 085103 (2010).
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theory [20, 25–28] and shows that RB convection has different turbulent regimes in
the Ra−Pr phase space (see Fig. 3 of Ref. [20]). The dynamics of rotating RB
convection are determined by three control parameters, i.e. Ra, Pr, and Ro, and this
leads to a huge Ra−Pr−Ro phase space, see Fig. 11.1.

In this chapter we will discuss the results of Direct Numerical Simulations (DNS)
that show that this heat transfer enhancement as function of the Ro number is smooth
for relatively low Ra number, here Ra = 4×107 (see Fig. 11.2a), while experimental
and numerical data for Ra = 2.73× 108 and Pr = 6.26 show a sharp onset for the
heat transport enhancement, see Fig. 11.2b. This difference is remarkable since only
a small shift in the Ra−Pr−Ro phase space is involved (see Fig. 11.1). We will first
describe the flow characteristics found in the simulations. We will show that there
is a smooth transition from one turbulent regime to another for the relatively low Ra
number regime whereas a sharp transition is found for higher Ra. In section 11.2
we will discuss the properties of the BLs found in the DNS in detail. Subsequently
the laminar BL theory for flow over an infinitely large rotating disk will be discussed
in section 11.3 in order to explain the BL properties found in the DNS. The derived
scaling laws from this theory will be used in a model based on the GL theory to
describe the heat transfer enhancement as function of Ro for the relatively low Ra
number regime with weak background rotation, see section 11.4.

11.2 Boundary layers in rotating RB convection

The flow characteristics of rotating RB convection for Ra = 4× 107, 1 < Ro <
∞, 0.2 < Pr < 20, and aspect ratio Γ = 1, are obtained from solving the three-
dimensional Navier-Stokes equations within the Boussinesq approximation. The nu-
merical method is already described in detail in chapter 6 and Refs. [107–109].

The first set of simulations is used to study the Ro number dependence of the fol-
lowing quantities: the normalized heat transfer, the thickness of the thermal BL, and
the normalized averaged root mean square (rms) vertical velocity fluctuations. Here
we have simulated rotating RB convection at several Ro numbers for three different
Pr numbers (Pr = 0.7, Pr = 6.4, and Pr = 20). All these simulations are performed
on a grid with 193×65×129 nodes, respectively, in the azimuthal, radial, and verti-
cal directions, allowing for sufficient resolution in the bulk and the BL according the
resolution criteria set in chapter 2. The Nusselt number is calculated in several ways
as is discussed in detail in chapter 2 and its statistical convergence has been verified.
Some data for Pr = 6.4 are already shown in chapter 8. There the average was over
4000 dimensionless time units. The new results for Pr = 0.7 and Pr = 20 are aver-
aged over 2500 dimensionless time units. Note that we simulated the flow for a large
number of eddy turnover times to reduce the statistical error in the obtained Nusselt
number results and to prevent the influence of transient effects. This is necessary to
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Figure 11.1: Phase diagram in Ra-Pr-Ro space for rotating RB convection. The data points indicate
where Nu has been measured or numerically calculated. The data are obtained in a cylindrical cell with
aspect ratio Γ = 1 with no slip boundary conditions, unless mentioned otherwise. The data from direct
numerical simulations and experiments are indicated by diamonds and dots, respectively. The data sets,
which are ordered chronologically in panel e, are from: Stevens et al. (2010 & 2009) (see chapters 6-8)
and the simulations of this chapter; Niemela et al. (2010) [81] (Γ = 0.5); Zhong and Ahlers (2009) (see
chapter 6 and 8); King et al. (2009) [76]; Schmitz and Tilgner (2009) [88] (free slip boundary conditions
and horizontally periodic); Liu and Ecke (2009 & 1997) [78, 79] (square with Γ = 0.78); Kunnen et
al. (2008) [75]; Oresta et al. (2007) [90] (Γ = 0.5); Kunnen et al. (2006) [85] (Γ = 2, horizontally
periodic); Julien et al. (1996) [77] (Γ = 2, horizontally periodic); Rossby (1969) (varying aspect ratio).
Panel a shows a three dimensional view on the phase space (see also movie 11.1 in the supplementary
material [115]), b) projection on the Ra-Pr phase space, c) projection on the Ra-Ro phase space, d)
projection on the Pr-Ro phase space.
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Figure 11.2: Normalized heat transfer as a function of the Rossby number. a) Numerical results for
Ra = 4×107 and Pr = 6.4. The diamonds and stars indicate the results obtained on the 193×65×129
and 257× 97× 193 grid, respectively. b) Ra = 2.73× 108 and Pr = 6.26. Solid circles: experimental
data of chapter 6 and 8. Open squares: numerical results of chapter 6 and 8. The vertical dashed line
indicates the position of the onset.

accurately resolve the transition regime where the heat transfer starts to increase and
to accurately determine the flow statistics. Furthermore, we note that all simulations
are started from a new flow field in order to rule out hysteresis effects.

The second set of simulations is used to study the Pr number dependence of the
same set of quantities. Here we simulated rotating RB for several Pr numbers and
three different Ro numbers (Ro = ∞, Ro = 3, and Ro = 1). The simulations for
Pr = 0.70 are performed on a 257× 97× 193 and the simulations at Pr = 0.25 and
Pr = 0.45 are performed on a 385× 129× 257 grid. The finer resolution is needed
here as the structure of the flow changes and the Reynolds number based on the LSC
increases for lower Pr. For most cases the flow is simulated for 400 dimensionless
time units and 200 dimensionless time units were simulated before data are collected
to prevent any influence of transient effects. For Pr = 2 and Pr = 4.4 we averaged
over 1200 dimensionless time units in order to obtain more accurate statistics on the
velocity field. Note that the second set of simulations is partially overlapping with
the first set of simulations. We find that results obtained on the different grids, are
very similar, i.e. the difference is generally between 0.5% and 1%, see Figs. 11.2a,
11.5a and 11.7a. Again all simulations are started from a new flow field in order to
rule out any hysteresis effects.

Fig. 11.3 shows the azimuthally averaged temperature profile at the cylinder axis
for different system parameters. In previous numerical studies concerning (rotating)
RB convection the thermal BL thickness is usually defined by either looking at the
maximum rms value of the temperature fluctuations or by considering the BL thick-
ness based on the slope of the mean temperature profile. In the latter case it is usually
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Figure 11.3: a) Visualization of the definitions of the thermal BL thicknesses λ sl
θ

and λ
sl−ng
θ

(assuming
zero gradient in the bulk). b-d) Azimuthally averaged temperature profiles for Ra= 4×107 and different
Pr and Ro numbers at the cylinder axis r = 0 for b) Ro = ∞, c) Ro = 3, and d) Ro = 1. Black, blue, red,
and dark green indicate the profiles for Pr = 0.25, Pr = 0.7, Pr = 6.4, and Pr = 20, respectively. The
dots indicate the data points obtained from the simulations. The insets show the profile over the full
cell.

assumed that no mean temperature gradient exists in the bulk (the BL thickness ac-
cording to this assumption is denoted by λ

sl−ng
θ

). The temperature gradient in the
bulk is, however, strongly influenced by rotation, see Ref. [86] and chapter 6, and
when rotation is present also by Pr, see Fig. 11.4. We define the thermal BL thick-
ness λ sl

θ
as the intersection point between the linear extrapolation of the temperature

gradient at the plate with the linear fit to the temperature profile in the bulk region
(0.25L < z < 0.75L), see Fig. 11.3a. From now on this definition of the thermal BL
thickness will be used.

For the relatively low Ra number regime, here Ra = 4× 107, the heat transfer
enhancement as function of Ro is smooth, see Fig. 11.5a. Note that although the
behaviour of λ sl

θ
(see fig. 11.5b), i.e. the horizontally averaged value of the radially

dependent thermal BL thickness (λ sl
θ
(r)), as function of Ro is similar for all Pr the

behaviour of Nu is very different. This is due to the influence of Pr on the effect of
Ekman pumping, see see chapter 6 and 7. At low Pr the larger thermal diffusivity
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Figure 11.4: a) Horizontally averaged temperature gradient at midheight as a function of Ro for Ra =
4× 107 and different Pr. The circles, diamonds, and squares indicate the data for Pr = 0.7, Pr = 6.4,
and Pr = 20, respectively. b) Temperature gradient at midheight as function of Pr for Ra = 4× 107

and different Ro. The circles, diamonds, and squares are the data for Ro = 1, Ro = 3, and Ro = ∞,
respectively. The vertical dashed lines (from left to right for Pr = 0.7, Pr = 6.4 and Pr = 20) in Fig.
11.4a indicate the position of the onset, see Fig. 11.6.
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Figure 11.5: a) Normalized heat transfer as a function of Ro for Ra = 4× 107 and different Pr. The
circles, diamonds, and squares are the data for Pr = 0.7, Pr = 6.4, and Pr = 20, respectively. The
dash-dotted line is the fit obtained by the model Eq. 11.20, with α = 55. The filled symbols indicate
the results from the grid refinement check (see text). b) Horizontally averaged thickness of the thermal
BL λ sl

θ
as function of Ro. Symbols as in Fig. 11.5a and the dash-dotted line indicates the same model

fit as in Fig. 11.5a. The vertical dashed lines (from left to right for Pr = 0.7, Pr = 6.4 and Pr = 20) in
both graphs represent the point at which the LSC strength starts to decrease, see Fig. 11.6.

limits the effect of Ekman pumping and causes a larger destabilizing temperature
gradient in the bulk, see chapter 6 and 7, see Fig. 11.4. Due to the limited effect of
Ekman pumping there is no heat transport enhancement for low Pr, see Fig. 11.5.

Fig. 11.6 shows that the volume averaged Rez,rms (dimensionless rms velocity
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Figure 11.6: The normalized averaged rms vertical velocity fluctuations Rez,rms for Ra = 4×107 and
different Pr as function of Ro. The stars indicate the volume averaged value of Rez,rms. The squares
and diamonds indicate the horizontally averaged values of the Rez,rms at a distance λ sl

θ
(r) from the

lower and upper plate, respectively. The vertical dashed lines again indicate the position where the LSC
strength starts to decrease. a) Pr = 0.7, b) Pr = 6.4, c) Pr = 20.

of the axial velocity fluctuations), which is a measure for the strength of the LSC,
decreases strongly for strong enough rotation. The vertical dashed lines in Fig. 11.6
indicate the position where Rez,rms(Ω)/Rez,rms(0) becomes smaller than 1, which we
use to indicate the point at which the LSC strength starts to decrease. This value is
determined by extrapolating the behaviour observed at low Ro numbers to reduce the
effect of the uncertainty in single data points. In figure 8.3 we also used this method
to indicate the position of the onset of the heat transfer enhancement in the high Ra
number regime. However, for this lower Ra number we do not find any evidence for
a sudden onset around this point, see Fig. 11.5 where the vertical lines are plotted
at the same positions as in Fig. 11.6. In contrast to the decrease in the volume
averaged value of Rez,rms the horizontally averaged value of Rez,rms at the edge of
the thermal BL (thus at the distance λ sl

θ
(r) from either the top or bottom boundary)

increases. This indicates that Ekman pumping, which is responsible for the increase
in Nu, sets in and no sign of Ekman pumping prior to the decrease in LSC strength
is found. Fig. 11.6 thus shows that the flow makes a transition between two different
turbulent states, i.e. a transition from a LSC dominated regime to an Ekman pumping
dominated regime as is discussed in detail in chapter 8 and 9. Fig. 11.6a shows no
increase in the horizontally averaged value of Rez,rms at the edge of the thermal BL
for Pr = 0.7, because the flow is suppressed for higher Ro, i.e. lower rotation rate,
when Pr is lower, see also the discussion in chapter 7.

The Pr number dependence of the Nu number and the thickness of the thermal
BL is shown in Fig. 11.7. From Fig. 11.7a we can conclude that hardly any Pr
number dependence on the Nu number exists in the weak rotating regime (Ro = 3).
However, a strong Pr number effect appears for stronger rotation rates, where Ekman
pumping is the dominant effect (chapter 6). Fig. 11.7b shows that the effect of weak
background rotation on the thermal BL thickness is largest for Pr≈ 2. The Pr number
dependence of Rez,rms is shown in Fig. 11.8. The difference between the data points
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Figure 11.7: a) Normalized heat transfer as a function of Pr number for Ra = 4×107 and different Ro.
The circles and diamonds indicate the data for Ro = 1, and Ro = 3, respectively. The open and filled
symbols indicate the results obtained on the 257×97×193 and the 193×65×129 grid, respectively.
b) Horizontally averaged thermal BL thickness λ sl

θ
as function of Pr. Symbols as in a) and squares for

Ro = ∞.

obtained for the bottom and top BL in Fig. 11.8 indicate the uncertainty in the results.
Increasing the averaging time, which we checked for Pr = 2 and Pr = 4.4, reduces
the differences for the data points obtained for the bottom and top BL. Furthermore,
we note that it is important to take the radial thermal BL dependence (λ sl

θ
(r)) into

account for lower Pr, where the radial BL dependence is strongest, and we excluded
the region close to the sidewall (0.45 < r < 0.5) from the horizontal averaging in
order to eliminate the effect of the sidewall.

The computation of the kinetic BL thickness can be either based on the position
of the maximum rms value of the azimuthal velocity fluctuations, see Ref. [91] and
chapter 8, or on the position of the maximum value of ε”

u := u ·∇2u, i.e. two times
the height at which this quantity is highest, as shown in chapter 2. In chapter 4
we compared the result of this empirical method with theoretical results and show
that it is indeed a suitable method to define the kinetic BL thickness. Here we first
average ε”

u horizontally in the range 0.05≤ r≤ 0.45 before we determine the position
of the maximum. This r range has been taken to exclude the region close to the
sidewall, where ε”

u misrepresents the kinetic BL thickness due to the rising plumes,
and the region close to the cylinder axis, since there it is numerically very difficult
to reliably calculate ε”

u , due to the singularity in the coordinate system. When the

radially dependent kinetic BL thickness (λ ε”
u

u (r)) is horizontally averaged a small
difference, depending on the averaging time, is observed between the bottom and
top because of the specific orientation of the LSC. We note that the same quantity
ε”

u is used in chapter 2, where it is shown that the kinetic BL thickness based on
ε”

u represents the BL thickness better than the one considering the maximum rms
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Figure 11.8: The normalized averaged rms vertical velocity fluctuations Rez,rms for Ra = 4×107 and
different Ro as function of Pr. The stars indicate the volume averaged value of Rez,rms. The vertical
error bars at Pr = 2 and Pr = 4.4 indicate the difference in the volume averaged value obtained after
1200 dimensionless time units (data point) and 400 dimensionless time units. The squares and the
diamonds indicate the horizontally averaged Rez,rms at a distance λ sl

θ
(r) from the lower and upper plate,

respectively. a) Ro = 3, b) Ro = 1.
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Figure 11.9: Azimuthally averaged profile of ε”
u(RaPr)1/2 for Ra = 4×107 and different Pr and Ro at

the radial position r = 0.25L. The figures, from left to right, are for Ro = ∞, Ro = 3, and Ro = 1. Black,
blue, red, and green indicate the profiles for Pr = 0.25, Pr = 0.7, Pr = 6.4, and Pr = 20, respectively.
The dots indicate the data points obtained from the simulations. The insets shows the profile over the
whole domain.

velocity fluctuations, which is normally used in the literature. The volume averaged
value of ε”

u is the same as the volume averaged kinetic energy dissipation rate εu

(although it differs locally), which can be derived using Gauss’s theorem [20]. Fig.
11.9 shows the azimuthally averaged profiles for ε”

u(RaPr)1/2 at r = 0.25L. The
normalization factor (RaPr)1/2 is used to get Nu number values for all profiles, see
Ref. [109]. In Fig. 11.10 the kinetic BL thickness based on the position of the
maximum kinetic dissipation rate is shown as function of Ro and Pr. To compare the
relative changes in the kinetic BL thicknesses the values are normalized by values for
the non-rotating case. For all Pr numbers there is a change in the BL behaviour at
the point where the LSC decreases in strength (vertical dashed lines in Fig. 11.10a).
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Figure 11.10: a) The thickness of the kinetic BL, average of bottom and top BL, based on the position
of the maximum value of ε”

u for Ra = 4× 107 and different Pr. The circles, diamonds, and squares
are the data for Pr = 0.7, Pr = 6.4, and Pr = 20, respectively. The dash-dotted line indicates Ro1/2

scaling. The vertical dashed lines (from left to right for Pr = 0.7, Pr = 6.4 and Pr = 20) represent the
point at which the LSC strength starts to decrease. b) As in a), but now for different Ro. The circles,
diamonds, and squares are the data for Ro = 1, Ro = 3, and Ro = ∞, respectively. The dash-dotted line
indicates Pr1/3 scaling. c) The kinetic BL thickness based on the position of the maximum value of
ε”

u and based on the position of the maximum rms velocity fluctuations are indicated by diamonds and
squares, respectively.

We see no clear change in the thickness of the kinetic BL thickness before the onset.
This could be caused by the method we use to define the kinetic BL thickness, i.e.
the data close to the sidewall and the cylinder axis were excluded since the method
based on the maximum position of ε”

u misrepresents the kinetic BL thickness in these
regions.

Figure 11.10c shows that when the kinetic BL thickness is based on the position
of the maximum value of ε”

u its thickness increases with Pr1/3, which is in agreement
with the GL model. Namely, since λu = aH/

√
Re and the simulations are mostly in

regime IIu where Re∼ Pr−2/3 this gives a scaling of Pr1/3 scaling for the kinetic BL
thickness. In non-rotating measurements in a cylindrical geometry Lam et al. [195]
used the position of the maximum velocity to determine the kinetic BL thickness
and they found the exponent to be 0.24 over a wide range of Pr. When we base
the kinetic BL thickness on the position of the maximum rms velocity fluctuations,
which is closely related to the position of the maximum velocity, we get an exponent
of 0.21, see figure 11.10c. This is in excellent agreement with the experimental
measurements, since the higher Pr numbers used in the experiments go more towards
regimes Iu and IVu of the GL theory than the numerical data and in these regimes a
slightly higher exponent is expected.

We conclude this section with a brief summary of the results obtained for the high
Ra number regime presented in chapters 6-9. For Ra & 1× 108 a sudden onset at
Ro = Roc in the heat transport enhancement occurs, see Fig. 11.2b, where we find a
smooth transition at lower Ra, see Fig. 11.2a. Fig. 11.11a shows the volume averaged
ratio Rez,rms(Ω)/Rez,rms(0). The behaviour is similar to the one observed at lower Ra,
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Figure 11.11: a) The averaged rms vertical velocities Rez,rms as function of Ro. The stars indicate the
volume averaged value of Rez,rms. The squares and diamonds, respectively, indicate the horizontally
averaged Rez,rms at the distance λ sl

θ
(r) from the bottom and top plate. b) The thickness of the kinetic

top and bottom BLs based on the position of the maximum ε”
u , diamonds (circles) for top (bottom) BL.

The vertical dashed lines in panel a and b indicate the position of Roc. Here the BL behaviour changes
from Prandtl-Blasius (right) to Ekman (left) (chapter 8). c) The circles (diamonds) indicate λ sl

θ
for the

bottom (top) plate.

see Fig. 11.6. For the high Ra number regime the onset at Roc is defined as the point
where the ratio Rez,rms(Ω)/Rez,rms(0) becomes smaller than 1. For the low Ra number
this point indicates the position where the LSC strength starts to decrease and just as
for the relatively low Ra number regime, Ekman pumping in the high Ra number
regime is indicated by an increase of the horizontally averaged Rez,rms value at the
edge of the thermal BL. Although the two cases, i.e. the relatively low Ra number
regime and the high Ra number regime both, show a transition between two different
turbulent states the important difference between the two is that the transition is sharp
in the high Ra number regime and smooth in the relatively low Ra number regime.
The onset in the high Ra number regime is also observed in the behaviour of the
BLs. Fig. 11.11b shows that the kinetic BL thickness does not change below onset
(Ro > Roc) and above onset the BL behaviour is dominated by rotational effects and
thus Ekman scaling (proportional to Ro1/2) is observed. This scaling factor is also
found in the laminar BL theory, which will be discussed in the next section. Finally,
fig. 11.11c shows the thermal BL thickness λ sl

θ
.

11.3 Boundary layer theory for weak background rotation

In the previous section we observed that there is a smooth increase in the heat transfer
as function of the Ro number when the Ra number is relatively low. In this section
we set out to account for the increase in the heat transfer as function of the rotation
rate within a model, which extends the ideas of the GL-theory to the rotating case. In
the GL theory the Prandtl-Blasius BL theory for laminar flow over an infinitely large
plate was employed in order to estimate the thicknesses of the kinetic and thermal
BLs, and the kinetic and thermal dissipation rates. These results were then connected
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with the Ra and Pr number dependence of the Nusselt number. In perfect analogy,
in the present chapter we apply laminar BL theory for the flow over an infinitely
large rotating plate to study the effect of rotation on the scaling laws. We stress
that employing the results of laminar BL theory over an infinite rotating disk to the
rotating RB case in a closed cylinder is fully analogous to employing Prandtl-Blasius
BL theory for flow over an infinite plate to the standard RB case without rotation,
where the method was very successful [20, 25–28].

In both cases the equations used to derive the scaling laws are time independent
and therefore the resulting solutions are associated with laminar flow. However, ev-
idently, high Rayleigh number thermal convection is time dependent. Therefore one
wonders whether the derived scaling laws still hold for time-dependent flow over an
infinite rotating disk. We will show that the Ro and Pr scaling that is derived is not
changed when temporal changes are included. This is again in perfect analogy to the
Prandtl-Blasius BL case where the scaling laws also hold for time dependent flow
provided that the viscous BL does not break down [28]. Indeed, recent experiments
[33, 34] and numerical simulations presented in chapter 13 have shown that in non-
rotating RB the BLs scaling wise behave as in laminar flow and therefore we feel
confident to assume the same for the weakly rotating case. The basic idea of the
model we introduce is to combine the effect of the LSC roll, which is implemented
in the GL theory by the use of laminar Prandtl-Blasius BL theory over an infinitely
large plate, and the influence of the rotation on the thermal BL.

The system we are analyzing to study the influence of rotation on the thermal BL
thickness above a heated plate is schematically shown in Fig. 11.12a. It is the laminar
flow of fluid over an infinite rotating disk. The disk rotates with an angular velocity
ΩD and the fluid at infinity with angular velocity ΩF = sΩD, with s < 1. Fig. 11.12b
shows that a positive radial velocity is created due to the action of the centrifugal
force. Because of continuity there is a negative axial velocity, i.e. fluid is flowing
towards the disk. The system has been analyzed before in the literature, e.g. Refs.
[29, 30, 196–198]. Here we will briefly summarize the procedure.

The system is analyzed by using the Navier-Stokes equations in cylindrical co-
ordinates and assuming a steady stationary, axial symmetric solution. To reduce the
Navier-Stokes equations to a set of ordinary differential equations (ODE) we employ
self-similarity. The first step is to determine the dimensionless height in the sys-
tem just as in the Prandtl-Blasius approach, in which the BL thickness scales as [24]
δ ∼

√
νx/U . For the case of a large rotating disk in a fluid rotating around an axis

perpendicular to the disk, the thickness of the BL can be estimated by replacing U by
ΩDx [24]. The thickness then scales as δ ∼

√
ν/ΩD. The similarity variable in the

system is the dimensionless height

ζ = z

√
ΩD

ν
. (11.1)
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Figure 11.12: a) Flow near a disk rotating with an angular velocity ΩD when the fluid at infinity is
rotating with ΩF = sΩD. Adapted from [30]. b) Velocity components in the von Kármán case: inset

shows λ
sl
u (solid line) and λ

99%
u (dashed line).

According to von Kármán, the following self-similarity ansatz for the velocity com-
ponents and the pressure can be taken [29, 30, 196–198]

u = rΩDF(ζ ), (11.2)

v = rΩDG(ζ ), (11.3)

w =
√

νΩDH(ζ ), (11.4)

p = ρνΩDP(ζ )+
1
2

ρs2
Ω

2
Dr2. (11.5)

After substitution into the Navier-Stokes equations one obtains a system of four cou-
pled ODEs,

F2 +F
′
H−G2−F

′′
+ s2 = 0, (11.6)

2FG+HG
′−G

′′
= 0, (11.7)

P
′
+HH

′−H
′′
= 0, (11.8)

2F +H
′
= 0, (11.9)

where the prime indicates differentiation with respect to ζ . This set of ODEs must
be supplemented by the boundary conditions

u = 0, v = rΩD , w = 0 for z = 0, (11.10)

u = 0, v = srΩD for z = ∞. (11.11)
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When substituting the self similarity ansatz (11.2) - (11.5) into these boundary con-
ditions one obtains

F = 0, G = 1 , H = 0 for ζ = 0, (11.12)

F = 0, G = s for ζ = ∞. (11.13)

Note that the boundary condition at infinity together with the continuity equation
(11.9) gives H

′
(ζ → ∞) = 0. One can further simplify the set of ODEs by realizing

that the ODE for the pressure (11.8) is decoupled from the ODEs determining the
velocity profiles by using the continuity equation (11.9) in (11.8) and subsequently
integrating this relation. The velocity profiles, for the von Kármán case (s = 0), are
shown in Fig. 11.12b. The inset shows that the dimensionless kinetic BL thickness
λ u ≡ λu/δ decreases with increasing relative rotation rate s of the fluid at infinity.
This is due to the decreasing effect of the centrifugal force. We determined λ

99%
u ,

the dimensionless kinetic BL thickness at which the velocity has achieved 99% of
the outer flow velocity, using the tangential velocity profile, i.e. when G(ζ ) = s+

0.01(1− s). Additionally, we calculated λ
sl
u , the dimensionless kinetic BL thickness

based on the slope of the tangential velocity at the disk. The scaling of the kinetic BL
predicted by the above rotating BL theory, i.e. Ro1/2, is the classical Ekman scaling.
In the simulations of rotating RB we find the same scaling of the kinetic BL once the
flow is dominated by rotational effect, i.e. Ro . Roc, see Fig. 11.11b.

The GL theory heavily builds on laminar Prandtl-Blasius BL theory, which de-
scribes the laminar flow over an infinite plate. In the Prandtl-Blasius theory the tem-
perature field is assumed to be passive to derive the Pr number scaling. As we want
to extend the GL theory to the rotating case we keep this analysis analogous to the
Prandtl-Blasius theory. Therefore, we assume the temperature field to be passive in
order to derive the scaling laws as function of the Pr number. We non-dimensionalize
the temperature by

θ̃(ζ ) =
θ −θ∞

θb−θ∞

, (11.14)

where θb is the temperature of the bottom disk, and θ∞ < θb is the ambient tempera-
ture. Then one obtains the following ODE describing the temperature field [199–201]

θ̃
′′
= PrH(ζ )θ̃ ′, (11.15)

where the prime indicates a differentiation with respect to ζ . The boundary condi-
tions are

θ̃ = 1 for ζ = 0, (11.16)

θ̃ = 0 for ζ = ∞. (11.17)
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The resulting system of ODEs subjected to the boundary conditions, is solved numer-
ically with a fourth order Runge-Kutta method using a Newton-Raphson root finding
method to find the initial conditions. One can take the analytic solution for the Ek-
man case (s ≈ 1), see appendix C, or the known solution for the Bödewadt case, see
for example [30, 196], as one of the starting cases to determine the solutions over the
whole parameter range in s and Pr.

In this way we obtain the full temperature profile for all s and Pr. For the heat
transfer the most relevant quantity is the thermal BL thickness λθ , which we non-
dimensionalized by δ , thus λ θ ≡ λθ/δ . One can distinguish between λ

sl
θ and λ

99%
θ ,

the dimensionless BL thickness based on the 99% criterion, thus when θ̃(ζ ) = 0.01.

Fig. 11.13a shows that the asymptotic scaling of λ
99%
θ and λ

sl
θ is the same. Further-

more, the figure shows that rotation does not influence the scaling of the thermal BL
thickness in the high Pr regime, because the same scaling, namely proportional to
Pr−1/3, is found as for the Prandtl-Blasius case. However, the rotation does influ-
ence the scaling in the low Pr regime, where now λ θ ∝ Pr−1 instead of λ θ ∝ Pr−1/2

as found in the Prandtl-Blasius case. Notice that λ
99%
θ > λ

sl
θ , which is due to the

decreasing temperature gradient with increasing height. Note that the thermal BL
thickness as given in figure 11.13a does not directly represent the heat transfer in
rotating RB convection. For weakly rotating RB convection one should account for
the effect of the LSC, which we will discuss in detail in the next section. And for
strongly rotating RB convection the relation Nu = L/(2λθ ) no longer holds, as part
of the mean temperature drop is across the bulk, see Fig 11.4. This temperature gra-
dient in the bulk is affected by the leaking of plumes out of the Ekman vortices, see
chapter 6.

In Fig. 11.13b we show the effective power-law exponent γ =(d logλ θ )/(d logPr)
of an assumed effective power law λ θ ∼ Prγ . It confirms that the effective scaling
in the high Pr regime is the same for the Prandtl-Blasius (no rotation) and the von
Kármán case (s = 0), but already at Pr = 1 a significant difference is observed.

The temperature advection equation (11.15) directly suggests the following rela-
tion between the scaling of the thermal BL thickness λ

sl
θ and the scaling of the axial

velocity at the edge of the thermal BL, HBL ∼ 1/Prλ
sl
θ . This immediately implies for

the low Pr regime, with λ
sl
θ ∼ Pr−1, that HBL is independent of Pr. For the high Pr

regime, with λ
sl
θ ∼ Pr−1/3, it gives HBL(Pr) ∼ Pr−2/3. The scaling of the thermal

BL thickness in the low Pr regime can be understood on physical grounds. In this
regime λ θ � λ u and, the kinetic BL is fully submerged in the thermal BL. The axial
velocity at the edge of the kinetic BL (11.13) is HBL = H(ζ → ∞), as can be shown
by applying mass conservation expressed by Eq. (11.9). As a consequence, in the low
Pr regime the axial velocity is constant in almost the whole thermal BL. Then Eq.
(11.15) can trivially be integrated and immediately gives λ

sl
θ ∼ Pr−1. This derivation
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Figure 11.13: a) The thermal BL thickness λ θ ≡ λθ/δ as function of Pr. The solid lines from bottom to

top indicate λ
sl
θ for the von Kármán case (s= 0), for s= 0.5, and for the Ekman case (s≈ 1,Ro∗ = 10−3,

see definition Eq. (C.2) in appendix C), respectively. The dashed lines from bottom to top indicate λ
99%
θ

for s= 0, s= 0.5, and s≈ 1,Ro∗= 10−3, respectively. Note that the scaling for the thermal BL thickness
goes asymptotically to Pr−1/3 in the high Pr regime and to Pr−1 in the low Pr regime. The inset shows
Prcross, the transition between the high and the low Pr regime as function of s based on the behaviour

λ
sl
θ (solid line) and λ 99%

θ
(dashed line). Note that the low Pr regime is more favored for higher s. b)

The solid lines indicate the effective scaling γ in λ θ ∼ Prγ as function of Pr for λ
sl
θ for the Blasius case

(no rotation), the von Karman case (s = 0), and the Ekman case (s ≈ 1) for two Rossby numbers. The
corresponding dashed lines indicate the effective scaling for λ

99%
θ . Also the analytic prediction, see Eq.

(C.12) in appendix C, for the von Kármán case is indicated in the figure.

is valid for all s, i.e. the scaling in the low Pr regime does not depend on the rotation
of the fluid at infinity. The scaling in the high Pr regime is also independent of the
rotation of the fluid at infinity. In the Ekman case s ≈ 1, see appendix C, this 1/3
scaling regime shifts towards very large Pr.

The equations (11.6)-(11.9) are time independent and therefore the resulting so-
lutions are understood to describe laminar flow. Temporal changes can be included
by adding ∂t̃ ũθ , ∂t̃ ũr, and ∂t̃ ũz where t̃ = tΩD without changing the Ro and Pr scaling
discussed above, i.e. the derived scaling laws above still hold for time dependent
flow provided that the viscous BL does not break down. This is in perfect analogy
to the Prandtl-Blasius BL case where the scaling laws also hold for time dependent
flow [28]. Recently Zhou and Xia [34] have developed a method of expressing ve-
locity profiles in the time-dependent BL frame and found that the re-scaled profiles
agree perfectly with the theoretical Prandtl-Blasius profile. This method could pos-
sibly reveal the effect of weak rotation on the BL profiles. However, since the LSC
orientation is not known a priori in three-dimensional RB convection it is impossi-
ble to sample the BL statistics at the position of the LSC without slightly tilting the
sample. Since only very small differences between the BL statistics for non-rotating
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and weakly rotating RB (Ro & 2) are observed the effect of tilting could significantly
influence this comparison. Therefore such an analysis is beyond the scope of this
thesis.

To investigate the crossover between the high and the low Pr regime we define
Prcross as the crossover point. Prcross is calculated by determining the intersection
between the asymptotic behaviour of the high and the low Pr regime. To calculate
Prcross we considered λ

sl
θ (Pr) and λ

99%
θ (Pr). The inset of Fig. 11.13a shows that

the low Pr regime becomes more favored when the rotation of the fluid at infinity be-
comes stronger. Then the kinetic BL thickness becomes thinner and the axial velocity
decreases, i.e. the thermal BL thickness increases. Because the thermal BL thickness
decreases with increasing Pr the crossover shifts towards higher Pr as is shown in the
inset of Fig. 11.13a. This effect is visible in rotating RB as shown in figure 7.5. Here
it is shown that for the non-rotating case λu < λ sl

θ
when Pr . 1. When the rotation

rate is increased, i.e. Ro is lowered, this transition shifts towards higher Pr and for
Ro = 0.1 λu < λ sl

θ
when Pr . 9.

In summary, the laminar rotating BL theory explains the Ro1/2 scaling of the
kinetic BL thickness in rotating RB convection and the shift of the position where
λu = λθ towards higher Pr when the flow is dominated by rotational effects.

11.4 Model for smooth onset in rotating RB convection

In this section we will introduce a model in the spirit of the GL approach in order to
describe the smooth increase in the heat transfer as a function of Ro that is observed
for relatively low Ra and weak background rotation. Since the GL theory assumes
smooth transitions between different turbulent states the model is limited to the rel-
atively low Ra number regime, since a sharp onset as function of Ro is found for
Ra & 1× 108. Furthermore, we assume that then the LSC, a basic ingredient of the
GL model, is still present. In this simple model we neglect the influence of Ekman
pumping, because it is a local effect that is rather insignificant at weak background
rotation. This is supported by the results in Fig. 11.6 and the results presented in
chapter 8 and 9, where we find no evidence for Ekman pumping at weak background
rotation. When strong rotation is applied Ekman pumping is the dominant effect and
the validity regime of our model is thus restricted to weak background rotation. The
basic idea of the model is to combine the effect of the LSC roll, which is implemented
in the GL theory by the use of the laminar Prandtl-Blasius theory over an infinitely
large plate, and the influence of rotation on the thermal BL.

Applying laminar BL theory requires that the viscous BL above the flat rotat-
ing plate does not brake down. This assumption will now be verified. The stability
for the von Kármán flow has been studied theoretically and experimentally by Ling-
wood [202–204], showing that instability occurs at Re≈ 510 where Re is defined as
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Re = r
√

Ω/ν (with r the distance to the rotation axis). Lingwood also pointed out
that other experimental studies show the same transition point within a very narrow
Reynolds number range Re = 513± 15, see [202] and references therein. More re-
cent experiments show similar results [205, 206]. For the Ekman case the instability
occurs at Re≈ 200, see [204]. For the case under consideration it can be shown that
Re . 55 (with r = 12.5 cm, Ω ≈ 0.20 rad/s, and ν = 1× 106 m2/s), see chapter 6.
It can safely be conjectured that laminar BL theory can be applied as the estimated
Reynolds number is an order of magnitude smaller than the critical Reynolds num-
ber. For further discussion on the stability of the rotational flow we refer to the classic
Refs. [1, 207].

We introduce λθR = λ
sl
θ (Pr)

√
ν/Ω, see λ

sl
θ (Pr) in Fig. 11.13a, as the thermal BL

thickness based on the background rotation and λθC as the BL thickness based on the
LSC roll. Furthermore, Γ is the diameter-to-height aspect ratio of the RB cell and we
set the radial length r = (ΓL)/2. Note that this is analogous to the length L which is
introduced in the GL theory for the length of the plate. Thus the Reynolds number
based on the background rotation is

ReR =
ΩL2Γ2

4ν
∝

1
Ro

. (11.18)

To calculate λθR we used ν = 1×10−6m2/s (water) and Γ = 1 and we set λθR = λθC
at Ro = ∞. The strength of the LSC roll is taken constant and λθC is known from
λθC/L = (2Nu)−1.

We model the increase of Nu as a crossover between a convection role dominated
BL and a rotation dominated BL. Thus without rotation the BL thickness is deter-
mined by the LSC roll, i.e. λθ = λθC, and when rotation becomes dominant the BL
thickness is determined by the rotating BL thickness, i.e. λθ = λθR. We now model
the crossover between these two limiting cases as

λθ

L
=

√
ReRλθR +α∗

√
ReCλθC

(
√

ReR +α∗
√

ReC)L
. (11.19)

Here the square root of Reynolds has been chosen since the dimensionless BL thick-
nesses scale with 1/

√
Re. We rewrite the above equation in terms of Ro, using

ReR ∝ ReC/Ro,

λθ

L
=

1
α
√

Ro
λθR +λθC(

1
α
√

Ro
+1
)

L
(11.20)

and we use the free parameter α to fit the model with the numerical data shown in
Fig. 11.5. It can be concluded that the presented model, based on the approach of
the GL theory, indeed reflects the increase of Nu (as compared to the case without
rotation) observed at relatively low Ra number (Ra = 4×107) when the LSC is still
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present. Furthermore, the thickness of the thermal BLs is also reflected correctly
by the model. Note that the large value of the parameter α = 55 indicates that the
influence of the rotation is rather weak before Ekman pumping sets in and it also
explains that for higher Ra (Ra & 1×108) no heat transfer enhancement is observed
below onset. The sudden (instead of smooth) transition is then fully determined by
the rotation rate where Ekman pumping sets in. This may be because at higher Ra
the thermal BL is already much thinner due to the stronger LSC and therefore the
effect of weak rotation is not sufficient to result in a significant thinner thermal BL.
When Ro < Roc the model cannot be used, since Ekman pumping is dominant in this
regime which is responsible for the strong increase observed in Nu when Ro < Roc.

11.5 Conclusions

To summarize, we have studied the effect of rotation on the RB system at relatively
low Ra number, i.e. Ra = 4× 107 by using DNS. We find a smooth increase of the
heat transfer as function of the rotation rate when weak rotation is applied. To de-
scribe this heat transfer enhancement we have extended the GL theory to the rotating
case by studying the influence of rotation on the scaling of the thermal BL thick-
ness. It is based on a similar approach as in the laminar Prantl-Blasius BL theory
over an infinitely large plate, as we analyzed the flow over an infinitely large rotating
disk where the fluid at infinity is allowed to rotate. Just as in the Prantdl-Blasius
BL theory we used a passive temperature field to calculate the characteristics of the
thermal BL. It turns out that weak background rotation does not influence the scaling
of the BL thickness in the high Pr regime, because again Pr−1/3 scaling is found.
However, rotation does influence the scaling in the low Pr regime where we find a
scaling of Pr−1 instead of Pr−1/2 found in the Prandtl-Blasius BL theory. With our
model for the thermal BL thickness, see Eq. (11.20), we can explain the increased
heat transfer observed in the relatively low Ra number regime before the strength of
the LSC decreases. The model neglects the effect of Ekman pumping as this effect is
rather insignificant before the strength of the LSC decreases, i.e. the regime to which
the model is applied. This means that the model cannot predict the heat transfer en-
hancement that is observed at moderate rotation rates where Ekman pumping is the
dominant mechanism. The contrast between the smooth onset at Ra= 4×107 and the
sharp onset at Ra & 1×108 is remarkable since only a small shift in the Ra−Pr−Ro
phase space is involved.





12
The role of Stewartson and Ekman boundary

layers ∗ †

When the classical RB system is rotated about its vertical axis roughly three regimes
can be identified. In regime I (weak rotation) the large scale circulation (LSC) is the
dominant feature of the flow. In regime II (moderate rotation) the LSC is replaced by
vertically aligned vortices. Regime III (strong rotation) is characterized by suppres-
sion of the vertical velocity fluctuations. Using results from experiments and direct
numerical simulations of RB convection for a cell with a diameter-to-height aspect
ratio equal to one at Ra ∼ 108− 109 (Pr = 4− 6) and 0 . 1/Ro . 25 we identified
the characteristics of the azimuthal temperature profiles at the sidewall in the differ-
ent regimes. In regime I the azimuthal wall temperature profile shows a cosine shape
and a vertical temperature gradient due to plumes that travel with the LSC close to
the sidewall. In regime II and III this cosine profile disappears, but the vertical wall
temperature gradient is still observed. It turns out that the vertical wall temperature
gradient in regimes II and III has a different origin than that observed in regime I. It
is caused by boundary layer dynamics characteristic for rotating flows, which drives
a secondary flow that transports hot fluid up the sidewall in the lower part of the
container and cold fluid downwards along the sidewall in the top part.

∗Based on: R.P.J. Kunnen, R.J.A.M. Stevens, J. Overkamp, C.Sun, G.J.F. van Heijst, H.J.H. Clercx,
The role of Stewartson and Ekman layers in turbulent rotating Rayleigh-Bénard convection, submitted
to J. Fluid Mech. (2011).

†The experimental measurements discussed in this chapter are performed by J. Overkamp and the
discussion presented in section 12.4 is based on the PhD thesis of R.P.J. Kunnen.
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Figure 12.1: The scaled heat transfer Nu(1/Ro)/Nu(0) as function of 1/Ro on a logarithmic scale.
Experimental and numerical data for Ra = 2.73×108 and Pr = 6.26 are indicated by red dots and open
squares, respectively. Data taken from chapter 6 and 8 and are called run E2 in Zhong & Ahlers [80].
The transition between the different regimes, see text, is indicated by the vertical dashed lines.

12.1 Introduction

In figure 12.1 we show a typical measurement of the heat transport enhancement with
respect to the non-rotating case as function of the rotation rate, see also chapters 6
and 8. The figure shows that, depending on the rotation rate, three different regimes
can be identified. Regime I (weak rotation), where no heat transport enhancement is
observed, regime II (moderate rotation), where a strong heat transport enhancement
is found, and regime III (strong rotation), where the heat transport starts to decrease.
We note that the division between regime I and regime II is obvious as there is a
bifurcation as is discussed in chapter 8 and 9. Furthermore, we note that the log plot
in figure 12.1 makes the transition from regime II to regime III look more sudden
than it actually is. Flow visualization experiments [91, 93] and the analysis of the
flow structures obtained in numerical simulations, see Kunnen et al. [91] and chapter
8, have confirmed that this division of regimes coincides with changes observed in
the flow patterns and flow characteristics.

In regime I (1/Ro. 0.5) the large scale circulation (LSC), typical for non-rotating
RB convection, is still present, because the Coriolis force is too weak to overcome the
buoyancy force that causes the LSC. In chapter 8 and 9 we showed that there is a sharp
transition to the regime where rotational effects become important, while at the same
time the strength of the LSC is decreasing [75]. Zhong & Ahlers [80] experimentally
found that the time-averaged LSC amplitudes decrease strongly at the transition from
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regime I to regime II, see figure 13 of their paper. In regime II (0.5 . 1/Ro . 6.67)
the LSC is replaced by predominantly vertically oriented vortical columns as the
dominant flow structures and a large increase in the heat transport is observed. When
the rotation rate is increased further a large decrease in the heat transport is observed,
because the vertical velocity fluctuations are suppressed due to the rotation [91, 97].
We will call this regime III.

In this chapter we address the question of how these different regimes can be
identified from measurements of the azimuthal wall temperature distribution and the
vertical temperature gradient along the sidewall, with probes that are embedded in
the sidewall of a RB convection cell. This method of sidewall temperature measure-
ments has been introduced by Brown et al. [148] and a validation of this method
is described in the second paragraph of Section 2 of the paper by Brown & Ahlers
[98]. Recently, Zhong & Ahlers [80] have extensively studied the properties of the
LSC in rotating RB convection in aspect ratio Γ = 1 experiments using this method.
These measurements covered the Ra number range 3×108 . Ra . 2×1010, the Pr
number range 3.0 . Pr . 6.4, and the 1/Ro number range 0 . 1/Ro . 20. In these
measurements detailed statistics about the thermal LSC amplitude (i.e. the amplitude
of the cosine fit to the azimuthal temperature profile at the sidewall), the LSC orien-
tation over time, the temperature gradient along the sidewall, the retrograde rotation
of the LSC, the frequency of cessations, etc., over this wide parameter range were
determined.

In this chapter is organized as follows. In section 12.2 we will present some ex-
perimental results on the properties of the azimuthal temperature profiles, which were
obtained with the Eindhoven RB setup discussed in section 10.2. For a much more
detailed set of experimental results on the properties of the azimuthal temperature
profiles we refer to the paper of Zhong & Ahlers [80]. In section 12.3 we compare the
experimental data with the azimuthal temperature and vertical-velocity profiles close
to the sidewall found in direct numerical simulations (DNS). In order to explain the
sidewall temperature measurements we study the azimuthally averaged flow profiles
obtained from DNS. The analysis presented in section 12.4 reveals that the sidewall
temperature measurements, particularly the presence of the vertical wall temperature
gradients in regimes II and III [80], can be explained by the presence of Stewartson
layers that are formed along the sidewall.

12.2 Experimental sidewall measurements

In RB experiments it is common to determine the flow properties by analyzing the
azimuthal wall temperature profile obtained by thermistors that are embedded in the
sidewall [20] and in our setup we do the same. Following section 5.6 we define the
relative LSC strength at midheight (S̄m), based on the energy in the different modes
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of the azimuthal temperature profile, as

S̄m = Max

((
∑

te
tb E1

∑
te
tb Etot

− 1
N

)
/

(
1− 1

N

)
,0

)
. (12.1)

Here ∑
te
tb E1 indicates the sum of the energy in the first Fourier mode over time, i.e.

from the beginning of the simulation t = tb to the end of the simulation t = te, ∑
te
tb Etot

the sum of the total energy in all Fourier modes over time, and N the total number
of Fourier modes that can be determined. The relative LSC strength S̄m always has
a value between 0 and 1; here 1 indicates that the azimuthal profile is a pure cosine
profile, which is a signature of the LSC according to Brown & Ahlers [98], and 0
indicates that the magnitude of the cosine mode is equal to (or weaker than) the value
expected from a random noise signal. Hence S̄m� 0.5 indicates that a cosine fit on
average is a reasonable approximation of the data, as then most energy in the signal
resides in the first Fourier mode. In contrast, S̄m � 0.5 indicates that most energy
resides in the higher Fourier modes. Hence, we consider the LSC as dominant once
S̄m � 0.5 at midheight. A small value of S̄m indicates that no single LSC is found,
implying the existence of either multiple rolls or, in the case of rotating Rayleigh-
Bénard convection, vertically aligned vortices.

Figure 12.2a shows the magnitude of the different Fourier modes of the azimuthal
wall temperature profile for the experiments at Ra = 1.16×109 with Pr = 4.38 based
on the data of eight equally spaced thermistors placed inside the sidewall (located at
z = 0.5L). The corresponding relative LSC strength is given in panel b. The figure
clearly shows that the relative LSC strength is large in regime I, which indicates the
presence of a LSC. However, for higher rotation rates, i.e. regime II, the relative LSC
strength decreases because vertically aligned vortices become the dominant feature
of the flow. For this flow one expects a random azimuthal temperature profile at
midheight, which is confirmed by the low relative LSC strength Sm in regime II and
III, see figure 12.2b.

Extensive sidewall temperature gradient measurements for non-rotating RB con-
vection were done by Brown & Ahlers [156] and for rotating RB convection by
Zhong & Ahlers [80], see their figures 10 and 11. When the LSC is the dominant
feature of the flow the vertical temperature gradient at the sidewall is mainly due to
plumes that travel close to the sidewall with the LSC. Thus one would expect that the
temperature gradient along the sidewall should decrease in regime II as the LSC dis-
appears there. However figure 10 of Zhong & Ahlers [80] shows that the temperature
gradient along the sidewall even increases in regime II and III. This nonzero temper-
ature gradient along the sidewall in regime II and III is caused by the secondary flow
that will be discussed in section 12.4.
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Figure 12.2: Experimental results on the magnitude of the different Fourier modes and Sm for Ra =
1.16× 109 and Pr = 4.38 based on the data of 8 azimuthally equally spaced probes at z = 0.50L. a)
The energy in the different Fourier modes of the azimuthal wall temperature profile normalized by the
energy present in all Fourier modes as function of 1/Ro. b) The corresponding relative LSC strength
Sm. The two dashed vertical lines in both panels indicate the transitions between regimes I and II, and
between II and III, respectively.

12.3 Numerical sidewall measurements

In order to verify the experimental results we analyze the data of DNS simulations
of rotating RB convection performed at varying Ro-values for Ra = 2.73× 108 and
Pr = 6.26 (see details in chapter 6) and for Ra = 1.00×109 and Pr = 6.4 (see details
in Kunnen et al. [91]). In the simulations we solved the three-dimensional Navier-
Stokes equations within the Boussinesq approximation in a cylindrical cell with Γ= 1
with no-slip boundary conditions at all walls, a uniform temperature at the horizontal
plates, and an adiabatic sidewall. For further details about the numerical code we
refer to Refs. [107, 109, 124]. In all simulations we calculate the azimuthal averages
of the three velocity components and the temperature. Furthermore, in the simula-
tions at Ra = 2.73×108 we placed 32 azimuthally equally spaced numerical probes
that provide simultaneous point-wise measurements of the temperature and the three
velocity components ur, uφ , uz in the radial, azimuthal, and vertical directions r, φ

and z, respectively, at the heights 0.25L, 0.50L, and 0.75L and a distances 0.45L from
the cylinder axis. The azimuthal temperature and vertical-velocity profiles measured
by the probes are analyzed in the same way as the experimental data.

Figure 12.3 shows the magnitude of the different Fourier modes of the azimuthal
vertical-velocity profiles for Ra = 2.73× 108 and Pr = 6.26 based on the data of 8,
16, and 32 equally spaced probes. The result in panel (a) agrees well with the result
obtained by Kunnen et al. [75]. Furthermore, a comparison of the relative energy
in the different Fourier modes based on the data of 8, 16, and 32 probes, see figure
12.3, reveals that 8 probes are insufficient to capture all flow characteristics. Since
the results based on the data of 16 and 32 probes are very similar, we assume that 16
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Figure 12.3: Results from DNS on the magnitude of the different Fourier modes and Sm for Ra =
2.73×108 and Pr = 6.26 based on the data of the numerical probes at z = 0.50L. Panels (a), (b), and
(c) show the energy in the different Fourier modes of the azimuthal temperature profile normalized
by the energy present in all Fourier modes based on the data of 8, 16, and 32 equally spaced probes,
respectively. The black, red, blue, and dark green lines indicate the energy in the first, second, third, and
the additional modes, respectively. Note that when the data of 8 probes are used a lot of information
about the higher modes is lost. Panel d shows the corresponding relative LSC strength based on the data
of 8 (red), 16 (blue), and 32 (black) equally spaced probes. The two dashed vertical lines indicate the
transitions between regimes I and II, and between II and III, respectively.

probes should be sufficient to capture all relevant features of the azimuthal profiles.
Fortunately, the data of 8 equally spaced thermistors are already sufficient to re-

liably calculate Sm for non-rotating RB convection, see chapter 11. To confirm this
observation for the rotating RB case (and validate the experimental results with 8
probes discussed in section 12.2) we therefore calculate Sm based on the data of 8,
16, and 32 equally spaced probes. The result is given in figure 12.3d, which shows
that the curves for the relative LSC strength almost collapse for the three cases. More-
over, the numerical data are in good agreement with the experimental result shown in
figure 12.2, including the large decrease of Sm at the transition between regimes I and
II. The small value of the relative LSC strength (Sm� 0.5) suggests the absence of
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the LSC and that the azimuthal temperature profile at midheight becomes random in
regime II and III. This is confirmed by a three-dimensional visualization of the flow,
see e.g. figure 6.5, where it is shown that in regime II vertically aligned vortices are
the dominant feature of the flow.

12.4 The role of Stewartson and Ekman boundary layers

In this section we will first discuss the flow characteristics for regimes I and II and
sketch the influence of background rotation on the mean flow in general terms, and
the role of the Ekman and Stewartson boundary layers is emphasized. Subsequently,
we provide physical explanations for the structure of the mean flow as observed for
regime II. Finally, we discuss the implications for the mean temperature gradient at
the sidewall of the convection cell.

12.4.1 Description of the flow characteristics

In figure 12.5 we show the azimuthally averaged temperature and velocity compo-
nents uz, uφ and ur for three typical rotation regimes: (the top row) 1/Ro = 0 (no
rotation, regime I), (the middle row) 1/Ro = 0.35 (weak rotation, regime I) and (the
bottom row) 1/Ro= 2.78 (moderate rotation, regime II) at Ra= 1×109 and Pr = 6.4.
The left hand side of each picture (r = 0) represents the position of the cylinder axis
(dash-dotted line), while the right-hand side (r/L = 0.5) corresponds with the side-
wall. A close-up of the thermal and flow structure in the bottom corner of the tank
for the case 1/Ro = 2.78 (see figure 12.5c) is shown in figure 12.6. We note that the
azimuthally averaged profiles for lower Ra values are similar to the ones presented in
figure 12.5.

For the non-rotating case (1/Ro = 0), shown in 12.5a, we observe the signature
of the LSC. The cell has an elliptic shape, with its major axis oriented at some angle
with the cylinder axis (see the sketch in figure 12.4, and also in Qiu & Tong [208]).
It is due to this mean tilt of the elliptic LSC, combined with the rotation sense as
shown in figure 12.4, that the azimuthal average of this flow is not zero; especially
upward and downward motions are separated in these azimuthally averaged plots. In
the top half upward motion (positive uz) is found near the cylinder axis, while the
downward flow (negative uz) is strongest near the sidewall. The opposite situation
is found for uz in the bottom half. The azimuthal velocity uφ does not show a well-
defined mean profile, just some small fluctuations. The averaged radial velocity ur

has maximal values near the intersections of the horizontal plates with the sidewall,
consistent with the averaged vertical velocity uz near these regions. Note also the
weak radially inward flow near the sidewall around midheight.
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When a small rotation is introduced [1/Ro = 0.35, figure 12.5b], a first obser-
vation is that the mean velocities become smaller (except the averaged azimuthal
velocity uφ which grows due to organization of the azimuthal flow). The vertical
velocity uz still has the dominant structuring due to the LSC, but especially near the
cylinder axis some disturbances appear. For the azimuthal velocity a well-defined
structure emerges due to the azimuthal averaging. The Coriolis force, deviating the
parts of the LSC with mean horizontal velocity to the right with respect to the local
direction of the (mean) horizontal flow, is driving the organization of an average az-
imuthal flow. The blue regions near the corners in the plot of the azimuthal velocity
uφ represent the anticyclonic motion induced by the mean horizontal outward flow
of the LSC (near the bottom and top plates, see figure 12.4). The sketch of the LSC
motion shows that the up (down) going plumes are first traveling straight up (down),
before the radial inward flow of the LSC sets in. The cyclonic motion that is ob-
served in the central sidewall region of the azimuthally averaged azimuthal velocity
is due to the radial inward flow of the LSC in the top (bottom) half of the cell for the
upward (downward) branch of the LSC, see figure 12.4. This radial inward flow of
the LSC results in a spin-up, i.e. in cyclonic azimuthal motion, by the action of the
Coriolis force. This mechanism is equivalent to conservation of angular momentum:
radial inward motion (ur < 0) of fluid parcels results in an increase of uφ , i.e. in
cyclonic motion. Because this radial inward flow is in the top (bottom) part of the
sample for the up (down) going plumes this results, after azimuthal averaging, in one
central sidewall region in which a cyclonic motion is found. This means that this
particular snapshot, cannot be used for interpretation of the movement of individual
plumes traveling from bottom to top and the other way around. However, in this very
schematic picture it does seem to be consistent with experimental measurements of
the anticyclonic motion of the LSC, see Refs. [75, 80, 100, 154], as both upgoing and
downgoing plumes get anticyclonic deflection by the mean anticyclonic azimuthal
flow near the plates and any effect of mean cyclonic flow becomes effective only for
z & 2/3H (for upgoing plumes) and z . H/3 (for downgoing plumes).

At much higher rotation rates, i.e. for larger 1/Ro-values, the LSC no longer ex-
ists, and the secondary circulation takes a different appearance. It is obvious from
the velocity plots that relatively large velocities occur in thin regions near the solid
container walls. A division of the domain into several regions is appropriate, being
the bulk interior domain, the Ekman layers at the horizontal plates, and the Stew-
artson layer at the sidewall. The Ekman layers have a (non-dimensional) thickness
δE = Ek1/2 (with the Ekman number defined according to Ek = ν/(ΩL2), represent-
ing an inverse Reynolds number based on the length scale L and velocity scale LΩ).
The Stewartson layer at the sidewall has a sandwich structure consisting of a thicker
outer layer of (non-dimensional) thickness δS,1/4 = Ek1/4 and a thinner inner layer of
(non-dimensional) thickness δS,1/3 = Ek1/3 (see e.g. [209–214]). The dashed lines in
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Figure 12.4: Schematic side view of the tilted LSC in the cylinder in the non-rotating or weakly rotating
(regime I) case. The dash-dotted line is the axis of the cylinder.

figure 12.5c and figure 12.6 indicate the typical layer thicknesses. In figure 12.6 the
bottom right-hand corner is magnified for the temperature (top panel) and each of the
velocity components, so that the various boundary layers are more easily recognized.
Note that since the secondary circulation associated with the Ekman and Stewartson
layers is weak, the mean velocities ur and uz in the bulk are very small and therefore
hardly noticeable, as is confirmed by the simulation results. It should be empha-
sized that the secondary circulation found here is considerably different from that
suggested by Hart & Olsen [215], based on a linear mean temperature gradient, or
that of Homsy & Hudson [177] enacted by centrifugal buoyancy. In both these works
there is no up-down symmetry, which is still fulfilled here. It must also be stated that
the aforementioned circulation is only of secondary magnitude. The still-turbulent
field of the vortical plumes is dominant.

The most remarkable change is observed in the distribution of the azimuthal ve-
locity uφ : in the bulk of the domain an anticyclonic flow (uφ < 0, indicated by blue
in figure 12.5c) is present, while a thin band of cyclonic flow (uφ > 0, indicated
by red) is visible only close to the sidewall. Simulations for the parameter range
0.35 . 1/Ro . 2.78 (not shown here) revealed that for increasing rotation rates (in-
creasing 1/Ro-values) the cyclonic flow region becomes confined to a region near
the sidewall of increasingly smaller size. These observations suggest that in this Ro-
regime the Ekman and Stewartson layers play an essential role in the mean secondary
circulation, even though this circulation is relatively weak and even continuously dis-
turbed by the non-steady thermally driven turbulent plumes that are present through-
out the flow domain.
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(a)

(c)

(b)

θ u u urz φ

Figure 12.5: The figures from left to right indicate the azimuthally averaged temperature, and the
velocity components uz, uφ , and ur, respectively, for Ra = 1.00× 109 and Pr = 6.4. The rows from
top to bottom indicate the results for (a) 1/Ro = 0, (b) 1/Ro = 0.35, and (c) 1/Ro = 2.78, respectively.
The left-hand side of each picture is the cylinder axis r = 0; the right-hand side corresponds to the
sidewall r/L = 0.5. The dashed lines in the pictures of the bottom row indicate typical boundary-layer
thicknesses: δE = Ek1/2 near the bottom and top plates, and δS,1/3 = Ek1/3 and δS,1/4 = Ek1/4 near the
sidewall (δS,1/3 is closest to the sidewall). Note that the azimuthally averaged azimuthal velocity for
1/Ro = 0 (a) is much smaller than for 1/Ro = 0.35 (b) and 1/Ro = 2.78 (c).
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θ

uz

uφ

u r

Figure 12.6: Close-up of the bottom-right corner of the figures shown in figure 12.5c (1/Ro = 2.78).
The area displayed is 0.15 < r/L < 0.5; 0 < z/L < 0.1. Color coding and dashed lines as in figure
12.5c. The panels from top to bottom indicate the azimuthally averaged temperature, and the velocity
components uz, uφ , and ur, respectively.
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12.4.2 Analysis secondary circulation regime II

The remarkable feature of the weak anticyclonic swirl flow in the bulk of the domain
in combination with a region of cyclonic swirling motion near the cylinder wall (the
uφ -plot in figure 12.5c) can be explained as follows. The heated fluid rising upward
from the bottom plate and the cooled fluid flowing downward from the top plate
result in a radially outward mean flow in the bulk of the domain. Although this
radial motion is relatively weak, conservation of angular momentum ( ∼ rV , with
V = Ωr+uφ the absolute azimuthal velocity) implies that the absolute swirl velocity
of fluid parcels will decrease, i.e. in the co-rotating frame this fluid will acquire an
anticyclonic azimuthal motion (uφ < 0). This radial outflow in the bulk of the domain
should be compensated by a radial inflow through the thin Ekman boundary layers at
the bottom and the top plates. The structure of this thermally driven secondary flow
in the r,z-plane is sketched in figure 12.7a.

This picture of the flow is not complete, however, because a competing mech-
anism is active simultaneously, tending to counteract the anticyclonic swirl motion
(uφ < 0) in the bulk of the domain: the spin-up process. This counteracting adjust-
ment process is essentially driven by the Ekman layers: the bottom Ekman layer
imposes a suction velocity on the interior given by uz =

1
2 EkωI (in dimensionless

form), with ωI the vertical component of the rotation of the relative interior flow. A
similar suction velocity is imposed on the interior flow by the upper Ekman layer. As
implied by conservation of mass, this differential suction drives a flow as depicted
schematically in figure 12.7b: a radial inflow is thus generated in the bulk of the
domain, while radial outflow takes place in both Ekman layers. The radial outflux
of the heated (cooled) fluid in the bottom (top) Ekman layer is returned through the
Stewartson layer at the cylinder wall, radially inwards into the interior. Again, ac-
cording to the principle of conservation of angular momentum rV , with V = Ωr+uφ ,
the radial motion in the bulk implies a change in the swirl velocity, now leading to an
increase in uφ (spin-up), as is observed in figure 12.5c.

As stated before, both mechanisms are acting simultaneously: the thermal forcing
leads to anticyclonic motion in the bulk (figure 12.7a), while the spin-up mechanism
tends to counteract this negative swirl (see figure 12.7b). Signatures of the latter
mechanism can be seen in the enlarged ur-graph in figure 12.6: although weak, a
radial outflow is observed in the bottom boundary layer, while the uφ -graph shows a
well-defined anticyclonic flow in the bulk.

Figure 12.8a shows the azimuthally averaged velocity profiles ur(r), uφ (r), and
uz(r) at z = 0.25L according to a numerical simulation for 1/Ro = 2.78. The radial
uφ -distribution clearly shows the presence of anticyclonic swirl in the interior do-
main, while significant positive swirl exists in the region close to the cylinder wall.
Also, the velocity components ur and uz show significant non-zero values near and in
this wall region.
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Figure 12.7: a) Fluid motion due to thermal forcing. The heated (cooled) fluid rising upward (flowing
downwards) from the bottom (top) plate result in a radially outward mean flow in the bulk of the domain.
This is compensated by a radial inflow through the thin Ekman boundary layers at the bottom and the
top plates. b) Fluid motion due to spin up. The Ekman layers impose suction towards the plates. Due
to mass conservation this leads to a radial inflow in the bulk domain and a radial outflow in the Ekman
layers. The dash dotted line in both panels indicates the center of the cell (which coincides with the
rotation axis).
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Figure 12.8: a) The azimuthally averaged velocity profiles at z= 0.25L for Ra= 1.00 ·109 and Pr = 6.4
for 1/Ro = 2.78. The azimuthal, radial, and axial velocity components are indicated in red, black, and
blue, respectively. (b) Sketch of the secondary circulation in the Ekman and Stewartson layers. Note the
singular eruption of the Ekman flux into the Ek1/3-layer in the bottom an top right corners, see details
in the text.

The matching of the azimuthal velocity component uφ (r = 0.5L) to the sidewall
requires a Stewartson Ek1/4-layer, in which this velocity is given by uφ =− 1

L uφ (r =
0.5L)exp(ξ

√
2/L), with L the height of the cylinder, and ξ = (r−0.5L)Ek−1/4 the
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stretched radial boundary-layer coordinate. When referring to this principal velocity
component as being O(1), the vertical and radial velocity components in this layer are
much smaller, viz. O(Ek1/4) and O(Ek1/2), respectively (in non-dimensional terms).
Matching of these velocities to the cylinder wall requires the presence of a thinner
Ek1/3-layer. The radial matching and the mass flux requirements imply a principal
solution with a vertical velocity uz ∼ O(Ek1/6) and a radial velocity ur ∼ O(Ek1/2)
within this layer (see, e.g. [212, 214]).

Where the Stewartson Ek1/3-layer meets the Ekman layers, the vertical velocity
has a singular structure: uz ∼ ±δ (η) at z = 0 and L, with η = (r−0.5L)Ek−1/3 the
stretched radial coordinate in this Stewartson layer, and δ the Dirac delta function.
Signs of these singular eruptions of the Ekman layer fluxes at z = 0 and z = L into the
thinner Stewartson layer are clearly visible in the uz-plot in figure 12.5c, and for the
case of the bottom corner in figure 12.6. Note that these vertical fluxes are positive
and negative near the bottom and top Ekman layers, respectively. Weaker vertical
velocities of opposite signs are observed in the thicker Ek1/4-layer, see figure 12.5c.
The velocity profile uz(r) at z = 0.25L, see figure 12.8a, also shows this peaked struc-
ture close to the cylinder wall, indicating the singular eruption of the Ekman flux into
the Ek1/3-layer. The oppositely signed vertical velocity next to the peak corresponds
with the vertical motion in the thicker Ek1/4-layer. The secondary circulation in the
Ekman and Stewartson layers is schematically shown in figure 12.8b. Additional ev-
idence that the mean velocity profiles close to the sidewall are indeed governed by
Stewartson boundary layer dynamics is provided in figure 12.9, where it is shown that
the thickness of the sidewall boundary layers observed in the simulations follows the
theoretical predictions, see Kunnen et al. [91].

The matching of the regions of anticyclonic (uφ < 0) and cyclonic (uφ > 0) flow
in the interior will also be carried out in a shear layer, in this case in the form of a
detached Stewartson layer, also having a sandwich structure consisting of a thinner
Ek1/3-layer embedded within a thicker Ek1/4-layer. The presence of this detached
shear layer is visible in the shape of the ur and uz profiles in figure 12.8a, around the
radius at which the sign-change in uφ occurs. This picture may be less clear, how-
ever, because the detached Stewartson layer and the Stewartson layer attached to the
cylinder wall are overlapping to some extent. The detailed structure of the velocity
fields and the associated transport characteristics will be analyzed in a separate study.

The role of Ekman and Stewartson boundary layer dynamics on the average mean
flow is here illustrated with numerical simulations with Ra = 1× 109 and Pr = 6.4,
see details in Kunnen et al. [91]. Separate sets of simulations with Ra = 2.73× 108

with Pr = 6.26 and Ra = 1×108 with Pr = 6.4 essentially revealed the same picture.
The explanation provided in this section is therefore applicable to a range of Rayleigh
numbers. Further studies are needed to explore the regime with Ra & 1×109 and the
role of the Prandtl number. We have also explored the role of the Rossby number,
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Figure 12.9: Boundary layer thicknesses for Ra = 1.00×109 and Pr = 6.4. The dimensionless viscous
boundary layer thickness near the plates is indicated by the circles. The dimensionless boundary layer
thickness of the viscous boundary layers near the sidewall, i.e. the Stewartson layers, is indicated by the
squares and follows the scaling of the inner Stewartson boundary layer thickness, i.e. δS,1/3. Adapted
from Kunnen et al. [91].

in particular by increasing the value of 1/Ro such that the flow is dominated by
strong rotation (close to and even in regime III). The vertical vortex plumes become
then stronger and data from azimuthally averaged components of velocity reveal an
increasing number of alternating, vertically almost homogeneous regions of uφ < 0
and uφ > 0.

12.4.3 Influence of the secondary circulation on sidewall temperature
measurements

The above observations of the flow structure enable us to explain the sidewall tem-
perature measurements. In figure 12.10 we have plotted radial distributions of the
azimuthally averaged temperature and vertical velocity at z = 0.25L. Three main ob-
servations from the data extracted at this particular level are: a strong vertical mean
flow near the sidewall (and for the highest rotation rate clearly within the Ek1/3-
layer), an increase of the mean temperature in the bulk with the rotation rate, and
an increased mean temperature near the sidewall compared to the bulk, regardless
of the existence of the LSC. We start with the latter observation. In regime I (weak
rotation) where the LSC is the dominant feature of the flow, the temperature gradi-
ent at the sidewall is caused by the LSC, which carries warm fluid upwards along
the sidewall and cold fluid down in the middle; and vice versa in the top half of
the cylindrical domain. In regime II (moderate rotation) the LSC has disappeared
and vertical vortices form the dominant feature of the flow. In this regime the sec-
ondary circulation described above causes a flow directed vertically away from the
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Figure 12.10: (a) Azimutally averaged temperature and (b) vertical velocity profiles as function of
the radial position at the height z = 0.25L for Ra = 1.00× 109 and Pr = 6.4. Black, blue, and red
indicate the data for 1/Ro = 0, 1/Ro = 0.35, and 1/Ro = 2.78, respectively. The dashed lines indicate
typical Stewartson boundary layer thicknesses (δS,1/3 = Ek1/3 and δS,1/4 = Ek1/4 near the sidewall for
1/Ro = 2.78 (δS,1/3 is closest to the sidewall). Note that for 1/Ro = 2.78 there is a strong up flow of
fluid in the inner Stewartson Ek1/3-layer, which causes a vertical temperature gradient at the sidewall.
In panel (a) the increasing mean temperature in the bulk with increasing rotation rate indicates that the
vertical temperature gradient in the bulk increases with increasing 1/Ro. The temperature gradient in
the bulk for this case is shown in figure 15 of Kunnen et al. [91].

plate close to the sidewall, i.e. in the Ek1/3-layer, see figure 12.10b. This means that
in regime II the secondary circulation carries warm fluid upwards along the sidewall
in the lower half of the cylinder and cold fluid downwards along the sidewall in the
top half. The enhanced mean temperature in the bulk with increasing rotation rate
indicates that the vertical temperature gradient in the bulk increases with increasing
1/Ro, see for example figure 15 of Kunnen et al. [91]. This temperature gradient is
caused by the merger of vertical plumes (see, e.g., [68, 77, 83, 84, 87, 87, 188, 216]),
i.e. the enhanced horizontal mixing of the temperature anomaly of the plumes results
in a mean temperature gradient. In regime III this temperature gradient in the bulk
becomes stronger than in regime II and eventually becomes equal to the temperature
gradient at the sidewall.

12.5 Conclusions

Based on the experimental data and results obtained from DNS we studied the charac-
teristics of the azimuthal temperature profiles at the sidewall. We find that in regime
I (weak rotation) the LSC is the dominant feature of the flow. In the sidewall tem-
perature measurements this is identified by the strong presence of the first Fourier
mode in the signal. When the rotation is increased a sudden onset in the heat trans-
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port enhancement is found that indicates the beginning of regime II, the moderate
rotation regime. In this regime the LSC is replaced by vertically aligned vortices and
due to their random position the magnitude of the first Fourier mode is very weak,
which confirms that the LSC has disappeared. This feature is also observed in regime
III, where the heat transfer decreases, because the vertical velocity fluctuations are
suppressed by the rotation.

When the LSC is the dominant feature of the flow the vertical temperature gradi-
ent at the sidewall is mainly due to plumes that travel close to the sidewall because
they travel with the LSC. However, also in regime II and III, in which the LSC is
absent, there is a strong temperature gradient at the sidewall. In these regimes, where
the vertical vortices are the dominant feature of the flow, the observed vertical temper-
ature gradient along the sidewall is mainly due to the secondary flow that transports
hot fluid radially outwards via the Ekman layer and then upwards along the side-
wall through the Stewartson boundary layer in the bottom part of the cell and mutatis
mutandis in the top part.

It is remarkable that the secondary flow in turbulent RB convection, which is ob-
served after time-averaging of the flow field, is so well described by linear Ekman and
Stewartson BL theory. This namely means that the laminar flow profiles are hidden
under the highly turbulent flow. Thus the knowledge about laminar flow dynamics
can still be highly relevant in the study of turbulent flows. We note that recently
more of these remarkable cases have been discovered. For example, in chapter 13 we
used the methods introduced by Zhou & Xia [34] to show that the laminar PB pro-
file is hidden under the turbulent fluctuations. In addition several examples of sharp
transitions between different turbulent regimes, which were previously mainly found
around onset, were discovered. In this context we also mention the sharp transitions
found in rotating RB convection found in chapter 8 and 9, the rotating von Karman
experiment [129, 184], and in turbulent flows with liquid sodium [182, 183], where
the increase of the magnetic Reynolds number beyond a certain threshold leads to bi-
furcations between different turbulent states of the magnetic field. These transitions
can be partially understood by insight in laminar profiles. For example in rotating
RB the transition between the two turbulent regimes is triggered by the transition
from Prandtl-Blasius BL to Ekman BL at the bottom and top plate. We also observed
sharp transitions between different turbulent states in rotating thermal convection as
is described in chapter 8 and 9.





Part III

Two-dimensional Rayleigh-Bénard
convection
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13
Prandtl-Blasius temperature and velocity

boundary layer profiles ∗ †

The shapes of the velocity and temperature profiles near the horizontal conducting
plates’ center regions in turbulent Rayleigh-Bénard convection are studied numeri-
cally and experimentally over the Rayleigh number range 108 . Ra . 3× 1011 and
the Prandtl number range 0.7 . Pr . 5.4. The results show that both the temperature
and velocity profiles well agree with the classical Prandtl-Blasius laminar boundary-
layer profiles, if they are re-sampled in the respective dynamical reference frames that
fluctuate with the instantaneous thermal and velocity boundary-layer thicknesses.
The study further shows that the Prandtl-Blasius boundary layer in turbulent thermal
convection not only holds in a time-averaged sense, but is most of the time also valid
in an instantaneous sense.

13.1 Introduction

In thermal convective turbulent flow two types of boundary layers (BL) exist near
the top and bottom plates, both of which are generated and stabilized by the viscous
shear of the large-scale mean flow: One is the kinematic boundary layer and the other
is the thermal boundary layer. The two layers are not isolated but are coupled dynam-

∗Based on: Q. Zhou, R. J. A. M. Stevens, K. Sugiyama, S. Grossmann, D. Lohse, K.Q. Xia, Prandtl-
Blasius temperature and velocity boundary layer profiles in turbulent Rayleigh-Bénard convection, J.
Fluid Mech. 664, 297312 (2010).

†The analysis of the numerical data has been performed by Q. Zhou and K.Q. Xia.
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ically to each other. They both play an essential role in turbulent thermal convection,
especially for the global heat flux across the fluid layer. The relation between the
shear rate and the heat flux depends crucially on the shape of the temperature pro-
file, see e.g. Ching [217]. Furthermore, almost all theories proposed to predict the
relation between Nu and the control parameters Ra and Pr are based on some kind
of assumptions for the BLs, such as the stability assumption of the thermal BL from
the early marginal stability theory [218], the turbulent-BL assumption from the the-
ories of Shraiman & Siggia [113] and Siggia [143] and of Dubrulle [185, 219], and
the Prandtl-Blasius laminar-BL assumption of the Grossmann & Lohse (GL) theory
[25–28]. Because of the complicated nature of the problem, different theories based
on different assumptions for the BL may yield the same predictions for the global
quantities, such as the Nu-Ra scaling relation [113, 173]. Therefore, direct character-
ization of the BL properties is essential for the differences between and the testing of
the various theoretical models and will also provide insight into the physical nature
of turbulent heat transfer in the RB system.

In the GL theory, the kinetic energy and thermal dissipation rates have been de-
composed into boundary layer and bulk contributions. Scaling-wise and in a time
averaged sense a laminar Prandtl-Blasius boundary layer has been assumed. This
theory can successfully describe and predict the Nusselt and the Reynolds number
dependences on Ra and Pr (see e.g. the recent review in [20]. As the Prandtl-Blasius
laminar BL is a key ingredient of the GL theory, it is important to make direct ex-
perimental verification of it. We note that also the (experimentally verified) calcula-
tion of the mean temperature in the bulk in both liquid and gaseous non-Oberbeck-
Boussinesq RB flows [105, 136, 220] is based on the Prandtl-Blasius theory.

In a recent high-resolution measurement of the properties of the velocity boundary
layer, Sun, Cheung & Xia [33] have found that, despite the intermittent emission of
plumes, the Prandtl-Blasius-type laminar boundary layer description is indeed a good
approximation, in a time-averaged sense, both in terms of its scaling and its various
dynamical properties. However, because of the intermittent emissions of thermal
plumes from the BLs, the detailed dynamics of both kinematic and thermal BLs in
turbulent RB flow are much more complicated. On the one hand, direct comparison
of experimental velocity [221] and numerical temperature [137] profiles with theoret-
ical predictions has shown that both the classical Prandtl-Blasius laminar BL profile
and the empirical turbulent logarithmic profile are not good approximations for the
time-averaged velocity and temperature profiles. Furthermore, two-dimensional (2D)
([106]) and three-dimensional (3D) (see chapter 2) numerical simulations found that
the deviation of the BL profile from the Prandtl-Blasius profile increases from the
plate’s center towards the sidewalls, due to the rising (falling) plumes near the side-
walls. On the other hand, Qiu & Xia [127] have found near the sidewall and Sun et al.
[33] near the bottom plate that the velocity BL obeys the scaling law of the Prandtl-
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Blasius laminar BL, i.e., its width scales as λv/H ∼ Re−0.5, where λv is the kinematic
BL thickness, defined as the distance from the wall at which the extrapolation of
the linear part of the local mean horizontal velocity profile u(z) = 〈ux(z, t)〉, with z
being the vertical distance from the bottom plate and 〈· · · 〉 being the time average
at the plate center, meets the horizontal line passing through the maximum horizon-
tal velocity [u(z)]max, and and Re = [u(z)]maxH/ν is the Reynolds number based on
[u(z)]max. These papers highlight the need to study the nature of the BL profiles, both
velocity and temperature, in turbulent thermal RB convection.

Considerable progress on this issue has recently been achieved by Zhou & Xia
[34] who have experimentally studied the velocity BL for water (Pr = 4.3) with par-
ticle image velocimetry (PIV). They found that, since the dynamics above and below
the range of the boundary layer is different, a time-average at a fixed height z above
the plate with respect to the laboratory (or container) frame will sample a mixed dy-
namics, one pertaining to the BL range and the other one pertaining to the bulk, be-
cause the measurement position will be sometimes inside and sometime outside of the
fluctuating width of the boundary layer. To make a clean separation between the two
types of dynamics, Zhou & Xia [34] studied the BL quantities in a time-dependent
frame that fluctuates with the instantaneous BL thickness itself. Within this dynam-
ical frame, they found that the mean velocity profile well agrees with the theoretical
Prandtl-Blasius laminar BL profile. In figure 13.1 we show the essence of the results,
again for the velocity boundary layer but for somewhat larger Pr, now Pr = 5.4. (For
details of the experiment and the apparatus used, please see Refs. [34, 150]). It is
seen here that the method of using the time dependent frame works equally well as
for the Pr = 4.3 case of Zhou & Xia [34]. While at the large Ra = 1.8×1011 the time
and space averaged velocity profile (triangles) already considerably deviates from
the Prandtl-Blasius profile (solid line), the dynamically rescaled profile (circles) per-
fectly agrees with the Prandtl-Blasius profile. Thus a dynamical algorithm has been
established to directly characterize the BL properties in turbulent RB systems, which
is mathematically well-defined and requires no adjustable parameters.

The questions which immediately arise are: (i) Does this dynamical rescaling
method also work for the temperature field, giving good agreement with the (Prandtl
number dependent) Prandtl-Blasius temperature profile? (ii) And does the method
also work for lower Pr, where the velocity field is more turbulent? Both these ques-
tions cannot be answered with the current Hong Kong experiments, as PIV only pro-
vides the velocity field and not the temperature field, and as PIV has not yet been
established in gaseous RB, i.e., at low Pr number Rayleigh-Bénard flows.

In the present chapter we will answer these two questions with the help of direct
numerical simulations (DNS). To avoid the complications of oscillations and rota-
tions of the large scale convection roll plane and as the Prandtl-Blasius theory is a
2D theory anyhow we will restrict ourselves to the 2D simulations of Sugiyama et
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Figure 13.1: Comparison between the spatial x-interval and time averaged velocity profiles u(z) (tri-
angles), the dynamically rescaled velocity profile u∗(z∗v) (circles – for the notation we refer to section
13.3), and the Prandtl-Blasius velocity profile (solid line) near the bottom plate obtained experimentally
at Ra = 1.8×1011 and Pr = 5.4 (working fluid water).

al. [106]. Our results will show that Zhou & Xia’s idea [34] of using time-dependent
coordinates to disentangle the mixed dynamics of BL and bulk works excellently also
for the temperature field and also for low Pr flow. I.e., if dynamically rescaled, both
velocity and temperature BL profiles can be brought into excellent agreement with
the theoretical Prandtl-Blasius BL predictions, for both larger and lower Pr.

13.2 DNS of the 2D Oberbeck-Boussinesq equations

The numerical method has been explained in detail in Sugiyama et al. [106]. In a
nutshell, the Oberbeck-Boussinesq equations with no-slip velocity boundary condi-
tions at all four walls are solved for a 2D RB cell with a fourth-order finite-difference
scheme. The aspect ratio is Γ ≡ D/H = 1.0. Four sets of data are presented here,
their Rayleigh number Ra, Prandtl number Pr and the corresponding Reynolds num-
ber Re are (108, 0.7, 5.4×103); (109, 0.7, 1.9×104); (108, 4.3, 8.3×102); and (109,
4.3, 3.2×103), respectively. In all the computations, the kinematic viscosity, thermal
expansion coefficient, and the temperature difference were fixed at ν = 6.6945 ·10−7

m2/s, α = 3.8343 ·10−4 /K and ∆= 40 K, respectively. The cell height was H = 7.524
cm for Ra = 108 and Pr = 0.7, H = 4.108 cm for Ra = 108 and Pr = 4.3, H = 16.21
cm for Ra = 109 and Pr = 0.7, and H = 8.851 cm for Ra = 109 and Pr = 4.3.
Sugiyama et al. [106] have provided a detailed code validation.

As the governing equations are strictly Oberbeck-Boussinesq, there exists a top-
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Figure 13.2: Examples of (a) an instantaneous horizontal velocity profile u(z, t) and (b) a normalized
instantaneous temperature profile Θ(z, t), averaged over 0.475 < x/D < 0.525. The DNS data are
obtained at Ra = 109 and Pr = 0.7. (c) and (d) show enlarged portions of the velocity and temperature
profiles near the bottom plate, respectively. The two tilted dashed lines are linear fits to the linear
parts of the velocity and temperature profiles near the plate and the two horizontal dashed lines mark
the instantaneous maximum horizontal velocity and the bulk temperature Θ = 1, respectively. The
distances of the crossing points from the plate define the instantaneous BL thicknesses δ bot

v,th(t). The
instantaneous profiles are not top-down symmetric, the time averaged ones are. Within our present
statistical error our data are consistent with zero thermal gradient in the bulk.

bottom symmetry. We therefore discuss only the velocity and temperature profiles
near the bottom plate. For the temperature profiles, we introduce the non-dimensional
temperature Θ(z, t), defined as

Θ(z, t) =
θ bot −θ(z, t)

∆/2
, (13.1)

where θ bot is the temperature of the bottom plate. In this definition, Θ(H) = 2
and Θ(0) = 0 are the temperatures for the top and bottom plates, respectively, and
Θ(H/2) = 1 is the mean bulk temperature.
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Figure 13.3: Sample time traces of (a) instantaneous kinematic BL thickness, δ bot
v (t), and (b) instanta-

neous thermal BL thickness, δ bot
th (t), normalized by the cell height. The data were obtained above the

center of the bottom plate at Ra = 1.0×109 and Pr = 0.7.

13.3 Dynamical boundary layer rescaling

The idea of the Zhou & Xia method [34] is to construct a dynamical frame that
fluctuates with the local instantaneous BL thickness. To do this, first the instan-
taneous kinematic and thermal BL thicknesses are determined using the algorithm
introduced by [34] [34]. To reduce data scatter, the horizontal velocity and temper-
ature profiles at each discrete time t, u(z, t) and Θ(z, t), are obtained by averaging
the velocity and temperature fields along the x-direction (horizontal) over the range
0.475 < x/D < 0.525. Figures 13.2(a) and (b) show examples of u(z, t) and Θ(z, t)
versus the normalized height z/H, respectively, of the DNS data obtained at Ra= 109

and Pr = 0.7. Both u(z, t) and Θ(z, t) rise very quickly from 0 to either the instanta-
neous maximum velocity or to the bulk temperature within very thin layers above the
bottom plate. While after reaching its maximum value, u(z, t) slowly decreases in the
bulk region of the closed convection cell, Θ(z, t) reaches and stays nearly constant
at the bulk temperature Θ = 1. To examine the velocity and the temperature in the
vicinity of plates in more detail, we plot the enlarged near-plate parts of the u(z, t)
and Θ(z, t) profiles in figures 13.2 (c) and (d). One observes that both profiles are
linear near the plate. The instantaneous velocity BL thickness δv(t) is then defined as
the distance from the plate at which the extrapolation of the linear part of the velocity
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Figure 13.4: Comparison among (a) velocity profiles: dynamical frame based u∗(z∗v) (circles), lab-
oratory frame based u(z) (triangles), and the Prandtl-Blasius velocity profile (solid line), and (b) the
corresponding temperature profiles: Θ∗(z∗th) (circles), Θ(z) (triangles), and the Prandtl-Blasius tem-
perature profile (solid line) near the bottom plate. All results obtained numerically at Ra = 108 and
Pr = 4.3. The inset of (b) shows enlarged portions of the profiles around the thermal boundary layers’
mergers to the bulk.

profile meets the horizontal line passing through the instantaneous maximum hori-
zontal velocity, and the instantaneous thermal BL thickness δth(t) is obtained as the
distance from the plate at which the extrapolation of the linear part of the temperature
profile crosses the horizontal line passing through the bulk temperature. The arrows
in figures 13.2(c) and (d) illustrate how to determine δv(t) and δth(t) as the crossing
point distances and figure 13.3 (a) and (b) show 60-second time traces of δ bot

v (t)/H
and δ bot

th (t)/H, respectively.
With these measured δv(t) and δth(t), we can now construct the local dynamical

BL frames at the plate’s center. The time-dependent rescaled distances z∗v(t) and
z∗th(t) from the plate in terms of δv(t) and δth(t), respectively, are defined as

z∗v(t)≡ z/δv(t) and z∗th(t)≡ z/δth(t). (13.2)

The dynamically time averaged mean velocity and temperature profiles u∗(z∗v) and
Θ∗(z∗th) in the dynamical BL frames are then obtained by averaging over all values
of u(z, t) and Θ(z, t) that were measured at different discrete times t but at the same
relative positions z∗v and z∗th, respectively, i.e.,

u∗(z∗v)≡ 〈u(z, t)|z = z∗vδv(t)〉 and Θ
∗(z∗th)≡ 〈Θ(z, t)|z = z∗thδth(t)〉. (13.3)

We first discuss our results from the simulation performed at Pr = 4.3, the Prandtl
number corresponding to water at 40 ◦C. Figure 13.4(a) shows the u∗(z∗v) profile (cir-
cles), normalized by its maximum value [u∗(z∗v)]max, obtained at Ra = 108. For com-
parison, we also plot in the figure the time-averaged horizontal velocity profile u(z)
(= 〈u(z, t)〉) (triangles), obtained from the same simulation. The solid line represents
the Prandtl-Blasius velocity BL profile, the initial slope of which is matched to that of
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Figure 13.5: Comparison between (a) velocity profiles: dynamical u∗(z∗v) (circles), laboratory u(z)
(triangles), and the Prandtl-Blasius laminar velocity profile (solid line), and (b) temperature profiles:
dynamical Θ∗(z∗th) (circles), laboratory Θ(z) (triangles), and the Prandtl-Blasius laminar temperature
profile (solid line) near the bottom plate, all obtained numerically at Ra = 109 and Pr = 0.7, represen-
tative for gases.

the measured profiles (Ahlers et al. [136]). For the range z∗v . 2 the u∗(z∗v) profile ob-
tained in the dynamical frame agrees well with the Prandtl-Blasius profile, while the
time-averaged u(z) profile obtained in the laboratory frame obviously is much lower
than the Prandtl-Blasius profile in the region around a few kinematic BL widths. –
Note that for z∗v & 2 the u∗(z∗v) profile deviates gradually from the Prandtl-Blasius
profile because u∗(z∗v) decreases in the bulk region of the closed convection system
down to 0 in the center and then changes sign. The Prandtl-Blasius profile, instead,
describes the situation of an asymptotically constant, nonzero flow velocity. – These
DNS results are similar to those found experimentally in a rectangular cell [34].

Figure 13.4(b) shows a direct comparison among the temperature profiles ob-
tained from the same simulation: the dynamical frame based Θ∗(z∗th) (circles), the
laboratory frame time-averaged temperature profile Θ(z) (= 〈Θ(z, t)〉) (triangles),
and the Prandtl-Blasius temperature profile. At first glance both the Θ∗(z∗th) and
Θ(z) profiles are consistent with the Prandtl-Blasius thermal profile. However, look-
ing more carefully at the region around the thermal BL to bulk merger (the inset of
figure 13.4(b)), one notes that the Θ∗(z∗th) profile obtained in the dynamical frame is
significantly closer to the Prandtl-Blasius profile than the time-averaged Θ(z) profile
obtained in the laboratory frame, indicating that the dynamical frame idea of Zhou
& Xia [34] works also for the thermal BL. Taken together, figures 13.4(a) and (b)
illustrate that both the kinematic and the thermal BLs in turbulent RB convection are
of Prandtl-Blasius type, which is a key assumption of the GL theory [25–28], and
the dynamical frame idea of Zhou & Xia [34] can achieve a clean separation for both
temperature and velocity fields between their BL and bulk dynamics.

We next turn to the simulation performed at Pr = 0.7, a Prandtl number typical
for gases, which is relevant in all atmospheric processes and many technical applica-



13.4. SHAPE FACTORS OF VELOCITY AND TEMPERATURE PROFILES 185

tions. Figures 13.5(a) and (b) show direct comparison between the temperature and
velocity profiles, respectively, at Ra = 109. Again, around the BL-bulk merger range
the laboratory frame time-averaged profiles are found to be obviously lower than the
Prandtl-Blasius profile. This once more indicates that the time-averaged BL quanti-
ties obtained in the laboratory frame are contaminated by the mixed dynamics inside
and outside the fluctuating BLs. On the other hand, within the dynamical frame, both
u∗(z∗v) and Θ∗(z∗th) are found to agree pretty well with the Prandtl-Blasius laminar
BL profiles, indicating that the dynamical frame idea works also for the turbulent RB
system with working fluids whose Prandtl numbers are of the same order as those for
gases.

13.4 Shape factors of velocity and temperature profiles

Let us now quantitatively compare the differences between the Prandtl-Blasius profile
and the profiles obtained from both simulations and experiments for various Ra and
Pr. The shapes of the velocity and temperature (thermal) profiles, labeled by i = v or
i = th, can be characterized quantitatively by their shape factors Hi, defined as [222],

Hi =
λ d

i
λ m

i
, i = v, th. (13.4)

λ d
i and λ m

i denote, respectively, the displacement and the momentum thicknesses of
the profile, namely,

λ
d
i =

∫
∞

0

[
1− Y (z)

[Y (z)]max

]
dz and λ

m
i =

∫
∞

0

[
1− Y (z)

[Y (z)]max

]
Y (z)

[Y (z)]max
dz. (13.5)

Here Y (z) = u(z) is the velocity profile if i = v and Y (z) = Θ(z) the thermal profile
if i = th. The deviation of these profiles from the Prandtl-Blasius profile is then
measured by

δHi = Hi−HPB
i , (13.6)

where HPB
i is the shape factor for the respective Prandtl-Blasius laminar BL profile.

If a given profile exactly matches the Prandtl-Blasius profile, δHi is zero. Note that
the Prandtl-Blasius velocity profile shape factor HPB

v = 2.59 is independent of Pr,
while the thermal Prandtl-Blasius BL profile shape factor HPB

th varies with Pr.
Figure 13.6(a) shows the shape factors Hi(Pr) of the thermal and the velocity

Prandtl-Blasius BL profiles as functions of Pr and figure 13.6(b) shows the corre-
sponding thermal profiles as functions of z∗th for three different Pr. Note that the
Prandtl-Blasius velocity BL profile is identical to the thermal one for Pr = 1. The
two figures show that the thermal shape factor HPB

th decreases with decreasing Pr.
We attribute this to the decrease of the temperature profiles in the BL range and the
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Figure 13.7: The Ra-dependence of the deviations of the profile shape factors from the respective
Prandtl-Blasius shape factors. (a) Laboratory frame δHv (open symbols) and dynamical frame δH∗v
(solid symbols); (b) laboratory frame δHth (open symbols) and dynamical frame δH∗th (solid symbols);
all from simulations performed at Pr = 0.7 (circles), Pr = 4.3 (triangles), and from experiments at
Pr = 5.4 (squares).

corresponding increase of the tails for lower Pr. Thus we expect that the slower ap-
proach to the asymptotic height 1 of the thermal profiles in the laboratory frame in
figures 13.4 and 13.5 should lead to a negative deviation of their Hth’s from the re-
spective Prandtl-Blasius values, cf. figure 13.7. In contrast, a positive δHi is obtained
if the profile runs to its asymptotic level faster than the Prandtl-Blasius profile. To
see this more clearly, we have plotted in figure 13.6(b) also two extreme cases, the
linear and the exponential profiles. Using (13.5) one calculates the shape factor 3
for the linear profile Θ∗(z∗th) = min(1,z∗th) and the shape factor 2 for the exponential
one Θ∗(z∗th) = 1− exp(−z∗th). The H-decreasing effect by lowering the profile can
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also be demonstrated by analyzing some profiles analytically. Using a combination
of exponential profiles,

Θ
∗(z∗th) = 0.5(1− exp(−(1−n)(z∗th))+0.5(1− exp(−(1+n)z∗th)), (13.7)

with 0≤ n < 1 one can evaluate, using (13.5), that the shape factor for small n is

H(n)≈ H(n = 0)−n2 = 2−n2. (13.8)

As is shown in figure 13.6(b) the profile for n > 0 is below the profile for n = 0.
This analytical example again reflects what we found as the characteristic difference
between the laboratory frame profiles as compared to the dynamical frame profiles.

Figure 13.7(a) shows the velocity shape factor deviations δHv (open symbols) and
δH∗v (solid symbols) as obtained from simulations at Pr = 0.7 (circles) and Pr = 4.3
(triangles) as well as from experiments at Pr = 5.4 (squares). Here, δHv is cal-
culated with the time averaged profile u(z) in the laboratory frame, while δH∗v is
calculated with the dynamical, time-dependent frame profile u∗(z∗v). The laboratoty
frame based deviations turn out to be definitely smaller than zero. In contrast, the
shape factor deviations δH∗v for the dynamical frame profiles obviously are much
closer to zero. A similar result is found for the thermal BLs: Figure 13.7(b) shows
δHth (open symbols) and δH∗th (solid symbols), versus Ra, for the same Pr number
simulations. Again δH∗th is nearly zero, whereas δHth is significantly off. Thus these
quantitative deviation measures again indicate that the algorithm using the dynami-
cal coordinates can effectively disentangle the mixed dynamics inside and outside the
fluctuating BLs.

13.5 Shape of instantaneous velocity and temperature
profiles

To further understand the results of our dynamical rescaling method, we study the
instantaneous velocity and temperature profiles. Figures 13.8, 13.9, and 13.10 show
examples of instantaneous velocity and temperature profiles, where the distance from
the plate, z, has been normalized by the instantaneous BL thickness corresponding to
that moment and the velocity has been normalized by the instantaneous maximum
horizontal velocity. In these figures we also plot the Prandtl-Blasius profiles for com-
parison and give the instantaneous shape factors. It is seen that most of the time
both the velocity and temperature BL profiles are of Prandtl-Blasius type; instanta-
neous deviations are associated with plume detachments. We note that averaging all
these rescaled profiles corresponds to the averaging of Eq. (3.2). On the other hand,
a simple average of the unscaled profiles will distort the shape of the profiles from
that of Prandtl-Blasius because of the mixing between BL and bulk dynamics, owing
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Figure 13.8: Examples of experimental instantaneous horizontal velocity profiles measured at Ra =
1.8× 1011 and Pr = 5.4, and rescaled by the instantaneous kinematic boundary layer thickness and
maximum velocity. Here the time average [u(z)]max is 2.2 cm/s and δv has a most probable value of
0.004H. We also give the instanteous shape factors. The solid curves are the Prandtl-Blasius velocity
profiles. These examples (and those in figures 13.9 and 13.10) are chosen to show various shapes of
profiles observed: the majority have excellent agreement with the PB profile.

to the fluctuations of the BL thickness. This also explains why our method works,
i.e., averages of the normalized instantaneous profiles will naturally separate the BL
and bulk dynamics, as they are all expressed in the intrinsic BL length scale, which
in this case is time-dependent. The properties of the instantaneous profiles can be
quantified by their time-dependent shape factor Hi(t) (i = v or th). Again, we exam-
ine the shape factor difference δHi(t) = Hi(t)−HPB

i for the respective instantaneous
profiles and that of the Prandtl-Blasius profile HPB

i . Figures 13.11(a) and 13.11(b)
show the probability density functions (PDF) of δHi(t) for the experimental and nu-
merical velocity profiles, respectively. Overall, these PDFs are all peaked close zero,
showing that most of the time the velocity profiles are indeed of Prandtl-Blasius type.
For the experimental results, the distributions are exactly peaked at zero, except that
for the highest Ra = 2.5×1011, for which the maximum is slightly off. In addition,
comparing to DNS data, the experimental data have broader distributions, which is
presumably due to their larger values of Ra (hence greater fluctuations). This is con-
sistent with our analysis in section 13.5 that a more turbulent profile should approach
its asymptotic value slower than the PB profile and thus give rise to a negative value
of δHv. The peaks for the numerical data are a bit off zero. These data may also sug-
gest that the PDFs of the shape factors are slightly dependent on Pr. Note that there is
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Figure 13.9: Examples of rescaled instantaneous horizontal velocity profiles obtained numerically at
Ra = 109 and Pr = 0.7. The mean [u(z)]max is 8.0 cm/s (corresponding to a Reynolds number of
[u(z)]maxH/ν ≈ 19 100) and δv has a most probable value of 0.01H. The solid curves are the Prandtl-
Blasius velocity profiles.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Θ
(z

,t
 
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

z/δ
th

bot

(t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H
th
(t

 
) = 2.63 H

th
(t

 
) = 3.30 H

th
(t

 
) = 2.65

H
th
(t

 
) = 1.54 H

th
(t

 
) = 2.44 H

th
(t

 
) = 2.74

H
th
(t

 
) = 2.07 H

th
(t

 
) = 2.35 H

th
(t

 
) = 2.61

 

Figure 13.10: Examples of rescaled instantaneous temperature profiles obtained numerically at Ra =
109 and Pr = 0.7. The solid curves are the Prandtl-Blasius temperature profiles. Here δth fluctuates
about its most probable value of 0.012H.
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Figure 13.11: PDFs of the shape factor difference between those of the rescaled instantaneous profiles
and those of the corresponding Prandtl-Blasius profiles. (a) Experimental velocity data. (b) DNS ve-
locity data. (c) DNS temperature data (profiles saturate at bulk temperature). (d) DNS temperature data
(profiles saturate at first maximum). See text for explanation

a minor peak located at δHv(t)'−0.8 for the data set Ra = 109 and Pr = 0.7. While
we do not know why only this set exhibits this behavior, it is interesting to note that
the instantaneous profile shown in figure 13.2(c) has a shape factor Hv = 1.8 which
corresponds to exactly the shape factor of the minor peak here.

In figure 13.11(c) we show the PDFs for δHth(t) from the DNS temperature data.
In the examined regime, these PDFs are independent of Pr, but show a certain Ra-
dependence. While the high Ra data are peaked exactly at zero, the low Ra data show
a minor peak or hump at a negative value. This suggests that there are temperature
profiles that have a much slower approach to the asymptotic value. Take, for example,
the middle figure in the left panel of figure 13.10: In that plot one can observe that at
the position around the BL thickness, Θ' 0.8, i.e., the temperature at the edge of the
BL only reaches about 80% of the asymptotic value. This distortion of the BL profile
is probably caused by a plume emission that thins the BL thickness corresponding
to that instant, while the temperature adjacent to the BL is not able to instantly relax
back to the bulk value. Recall that the instantaneous thermal boundary layer thickness
is defined through the asymptotic value of Θ (see figure13.2(d)). If we, however,
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Figure 13.12: Cross-correlation function g(τ) between δv(t) and δth(t).

define the BL thickness as the intersection between the extrapolations of the linear
part of the profile and its first maximum, the rescaled instantaneous profile looks
quite different. Indeed, following this procedure, we can obtain temperature profiles
that are much closer to the Prandtl-Blasius type. Figure 13.11(d) shows the PDFs
of the shape factor difference for instantaneous rescaled temperature profiles obtain
this way. The figure shows that the PDFs for the data sets Ra = 108, Pr = 0.7 and
4.3 now peak at zero and the minor peak seen in figure 13.11(c) is either gone or
significantly reduced. We stress, however, that here we use the first maximum instead
of the asymptotic value of the temperature profile in the determination of the thermal
boundary layer thickness only for the purpose of gaining a better understanding. In
order to have a consistent and uniform procedure, all the BL thicknesses presented in
this chapter are obtained using the more “traditional” definitions, i.e., those shown in
figure 13.2.

13.6 Relationship between δv(t) and δth(t)

The relation between δv(t) and the external large-scale velocity field has been dis-
cussed in detail in Zhou & Xia [34]. Here, we further study the relation between
the measured instantaneous kinematic and thermal BL thicknesses. We calculate the
cross-correlation function between δv(t) and δth(t), i.e., g(τ)= 〈[δv(t)−〈δv(t)〉][δth(t)−
〈δth(t)〉]〉/σvσth, where σv =

√
〈[δv(t)−〈δv(t)〉]2〉 and σth =

√
〈[δth(t)−〈δth(t)〉]2〉.

Figure 13.12 shows two examples of g(τ) measured at Pr = 4.3 and 0.7, respec-
tively. Two features are worthy to note: (i) There is a strong positive correlation
between δv(t) and δth(t), i.e. a thicker kinematic BL leads to a thicker thermal BL
and vice versa; (ii) The positive peak is located at a positive time lag τ0, indicating
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that the variations of δv(t) lead the variations of δth(t). One can also see that τ0 for
Pr = 4.3 is larger than τ0 for Pr = 0.7. The reason for this behavior is that the kine-
matic boundary layer is thicker than the thermal one at Pr = 4.3 and hence a longer
time lag is needed for the influence of the kinematic BL to propagate to the thermal
BL via momentum diffusion, while the two layers are of the same order at Pr = 0.7.
This result provides a direct evidence for the interplay between the kinematic BL and
the thermal BL.

We also notice oscillations in the cross-correlation functions, which are rather ro-
bust for the lower Pr data. The timescale of this oscillation is of the order of 1.5
seconds (3 seconds) for Pr = 0.7 (Pr = 4.3). This is comparable to H/[u(z)]max,
which equals 1.58 seconds (3.02 seconds). This immediately suggests a connection
to the periodic plume emission model of Villermaux [172]. However, from watch-
ing movies of the respective flows, we conclude that the flow organization is more
complicated than suggested in that model: Next to the large scale convection roll,
corner-flow develop, see chapter 14. Plumes emitted from the BL are first collected
by the corner-flow and then partly emitted again. These plumes then hit the thermal
BL from the top, leading to further plume emission. This periodic process is more
pronounced and more stable at Pr = 0.7, leading to stronger long-time correlations.
On the other hand, in a 3D system, Xi et al. [149] and Zhou et al. [162] have shown
experimentally that thermal plumes are emitted neither periodically nor alternately,
but randomly and continuously, from the top and bottom plates. We note that Viller-
maux’s model is 2D and the present numerical simulation is also 2D. Oscillations
observed here might then be a major difference between the 2D and 3D systems.
Further work beyond the scope of the present thesis will be required to fully settle
this issue.

13.7 Conclusions

In summary, we have studied the velocity and temperature BL profiles in turbulent
RB convection both numerically and experimentally. We extended previous results
to different Prandtl numbers and in particular to thermal BLs. The results show that
both the velocity and the temperature BLs (at least in the plates’ center region) are of
laminar Prandtl-Blasius type in the co-moving dynamical frame in turbulent thermal
convection for the parameter ranges studied. However, the fluctuations of the BL
widths, induced by the fluctuations of the large-scale mean flow and the emissions of
thermal plumes, cause measuring probes at fixed heights above the plate to sample
a mixed dynamics, one pertaining to the BL range and the other one pertaining to
the bulk. This is the reason why the time-averaged velocity and temperature pro-
files measured in previous work in fixed laboratory (RB cell) frames deviate from
the Prandtl-Blasius profiles. To disentangle that mixed dynamics, we constructed a
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dynamical BL frame that fluctuates with the instantaneous BL thicknesses. Within
this dynamical frame, both velocity and temperature profiles are very well consistent
with the classical Prandtl-Blasius laminar BL profiles, both for lower and larger Pr
(from 0.7 to 5.4). Furthermore, when the instantaneous velocity and temperature are
rescaled by their respective instantaneous boundary layer thicknesses, we find that the
Prandtl-Blasius profiles not only hold in a time-averaged sense, but most of the time
is also true in an instantaneous sense. We have thus extended the time-independent
Blasius boundary layer equation or the Prandtl-Blasius boundary layer to the time-
dependent case, in the sense that it holds at every instant in the frame that fluctuates
with the instantaneous BL thickness.

To conclude, we have validated the idea and algorithm of using dynamical coordi-
nates over a range of Pr and Ra for both kinematic and thermal BLs and have shown
that the Prandtl-Blasius laminar BL profile is a valid description for the BLs of both
velocity and temperature in turbulent thermal convection. Laminar Prandtl-Blasius
BL theory in turbulent RB thermal convection has thus turned out to indeed be valid
not only in terms of the scaling properties, but also in terms of BL profiles as seen
from the dynamical frame, co-moving with the local, instantaneous BL widths.





14
Flow reversals in thermally driven turbulence

∗ †

We analyze the reversals of the large scale flow in Rayleigh-Bénard convection both
through particle image velocimetry flow visualization and direct numerical simula-
tions (DNS) of the underlying Boussinesq equations in a (quasi) two-dimensional,
rectangular geometry of aspect ratio 1. For medium Prandtl number there is a diag-
onal large scale convection roll and two smaller secondary rolls in the two remain-
ing corners diagonally opposing each other. These corner flow rolls play a crucial
role for the large scale wind reversal: They grow in kinetic energy and thus also in
size thanks to plume detachments from the boundary layers up to the time that they
take over the main, large scale diagonal flow, thus leading to reversal. Based on this
mechanism we identify a typical time scale for the reversals. We map out the Rayleigh
number vs Prandtl number phase space and find that the occurrence of reversals very
sensitively depends on these parameters.

∗Based on: K. Sugiyama, R. Ni, R.J.A.M. Stevens, T.S. Chan, S.-Q. Zhou, H.-D Xi, C. Sun, S.
Grossmann, K.-Q. Xia, D. Lohse, Flow reversals in thermally driven turbulence, Phys. Rev. Lett. 105,
034503 (2010).

†The experiments have been performed in Hong Kong by R. Ni, T.S. Chan, S.-Q. Zhou, H.-D. Xi,
C. Sun, and K.-Q. Xia.
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14.1 Introduction

Spontaneous flow reversals occur in various buoyancy driven fluid dynamical sys-
tems, including large scale flows in the ocean, the atmosphere, or the inner core of
stars or the earth, where such reversals are associated with the reversal of the mag-
netic field. In RB convection flow reversals have been detected and statistically ana-
lyzed, mainly through measurements of the temperature at one [166] or several points
[98, 156] in the flow or at the walls and more recently through flow visualization with
particle image velocimetry (PIV) [155, 161]. Various models have been developed
to account for the reversals, either of stochastic nature [157, 167] or based on simpli-
fying (nonlinear) dynamical equations [168, 169], which show chaotic deterministic
behavior. Most of the experimental studies have so far been done in a cylindrical
cell, where the complicated three-dimensional dynamics of the convection role (see
e.g. [149, 163] and section VIII of [20]) complicates the identification of the reversal
process.

In the present chapter, we restrict ourselves to the study of flow reversals in (quasi)
two-dimensional (2D) rectangular geometry: experimentally to RB convection in a
flat cell and numerically to DNS of the two-dimensional Oberbeck-Boussinesq equa-
tions, for which reversals have been observed already in [223]. This approach offers
three advantages: (i) The flow reversal in quasi-2D is less complicated than in 3D
(and therefore of course may be different); (ii) the visualization of the full flow is
possible; and (iii) a study of a considerable fraction of the Rayleigh number Ra vs
Prandtl number Pr phase space becomes numerically feasible.

14.2 Experimental and numerical method

The experiments were made in rectangular, quasi-2D cells [150]. To extend the range
of Ra, two cells of nearly identical geometry are used. The larger (smaller) cell has
a horizontal cross section of 24.8×7.5 (12.6×3.8) cm2, and the heights of the larger
(smaller) cell is H = 25.4 cm (H = 12.6 cm), giving an aspect ratio Γ ≈ 1 in the
plane of the main flow (and an aspect ratio of about 0.3 in the direction perpendicular
to it). The fluid is water with a mean temperature of 28oC, corresponding to Pr=5.7.
For direct visualization of flow reversals, PIV is used for a few selected Ra. The PIV
measurement in this system has also been described previously [150]. To study the
statistical properties of the reversals over long time periods, we measure the temper-
ature contrast δT between two thermal probes embedded respectively in the left and
right sides of either the top or the bottom plates. Reversals of the upward going hot
plumes and downward going cold plumes correspond to the switching between the
right and left sides of the system, δT therefore is indicative of reversals.
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The numerical code is based on a fourth-order finite-difference discretization of
the incompressible Oberbeck-Bousinesq equations and has been described in [106].
The grid resolution has been chosen according to the strict requirements as formu-
lated in chapter 2. As in experiment also the numerical flow is wall-bounded, i.e.,
we use no-slip boundary conditions at all solid boundaries: u = 0 at the top (z = H)
and bottom (z = 0) plates as well as on the side walls x = 0 and x = H. For the tem-
perature at the side walls heat-insulating conditions are employed and Tb−Tt = ∆ is
the temperature drop across the whole cell. Times are given in multiples of the large
eddy turnover time tE , defined by tE := 4π/〈|ωc(t)|〉, where ωc denotes the center
vorticity.

14.3 Flow reversals

We start by showing qualitative features of the reversal process using examples from
both numerical simulations and experiments. Fig.14.1 shows snapshots of the tem-
perature and velocity fields from DNS and those of the velocity field from experiment
just before, during, and after the large convection roll reversal. Corresponding videos
can be viewed from the supplementary materials [115]. Visually, the reversal process
can be easily detected. To automatize this we measure the local angular velocity at
the center of the cell; however, with this method some plumes passing through the
center can lead to erroneous reversal counting. A better way is to rely on a global
quantity, e.g. the global angular momentum (which has been successfully used for re-
versal characterization in 2D Navier-Stokes turbulence [106, 224]). This is defined as
L(t) = 〈−(z−H/2)ux(xxx, t)+ (x−H/2)uz(xxx, t)〉V , where 〈...〉V represents averaging
over the full volume. The time dependence of L from simulation and experiment, as
shown respectively in Figs.14.1(d) and (h), indeed nicely reveals the reversal through
a sign-change.

From the movies corresponding to Fig. 14.1 the basic role of the corner flows in
the reversal process can be observed: While the main roll is diagonally orientated
in the cell, smaller counter-rotating rolls develop in diagonally opposing corners.
They are energetically fed by detaching plumes from the boundary layers trapped in
the corner flows, leading to their growth. Once the two corner flows have reached a
linear extension of≈H/2 [Fig.14.1(b) and moment (b) in Fig.14.1(d) and Fig. 14.1(f)
and moment (f) in Fig.14.1(h)], they destroy the main convection roll and establish
another one circulating in opposite direction.

The heights h(t) of the corner flows are measured by first fitting the temperature
profile at the respective sidewall with splines, and then identifying the position of
the steepest gradient of T (z): From movies and snapshots we judge that this is an
excellent measure for the height h(t) of the corner-flow. Time series of h(t), together
with the (rescaled) center vorticity ωc(t) as quantitative measure of the strength of the
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Figure 14.2: Time series of the center vorticity ωc(t) (rescaled by its maximum) (lower panel) and
the heights h(t) of the lower left (blue) and right (red) corner flows, revealing their approximate linear
growth. Not all growth processes need to lead to an immediate successful reversal, as seen for t/tE ≈
1300. Ra = 108, Pr = 4.3.
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Figure 14.3: Log-log plot of the Ra-dependence of the mean time intervals 〈τ〉 between reversals,
normalized in terms of the large eddy turnover time tE . Red symbols are from experiment and black
ones from simulation. The error bar originates from the statistics of the reversals; for the numerical case
it is smaller than the symbol size.
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large scale convection roll, are shown in figure 14.2. It is seen that after a reversal (as
indicated by a sign change in ωc(t)) the respective corner-flow grows roughly linearly
in time, before it reaches the half-height h(t)/H ≈ 1/2 and breaks down, leading to
flow reversal. However, the growth of the corner-flow need not always lead to a
reversal of the large scale convection roll: There are cases in which the corner-flow
looses energy due to some plume detachment from it, leading to full recovery of the
large scale convection roll in its orginal direction (e.g., at t/tE ≈ 1300 in figure 14.2).
Also in experiment we have observed such unsuccessful build-ups of the corner-flow.
Below we will try to quantify the energy gains and losses of the corner-flows.

The mean time interval 〈τ〉 is shown in Fig. 14.3. Firstly, we clearly see that
experiment and simulation are in very good agreement. The figure shows that 〈τ〉/tE
at most weakly depends on Ra up to Ra≈ 2×108, but for larger Ra rapidly increases
with increasing Ra, i.e., reversals occur less and less frequently. The numbers mean
that there are only very few reversals: of order one per hour in the Ra ∼ 108 range
down to one within two days in the Ra ∼ 109 range. For Ra≥ 5× 108 no reversals
could be detected any more in our numerical simulations, even for an averaging time
of 2600 large eddy turnovers. In experiment two reversals could still be observed at
Ra= 1.6×109 (presumably due to the longer observation time in experiment which
goes beyond 10000 large eddy turnovers, corresponding to four days), but these also
cease for larger Ra.

14.4 Model

These findings led us to map out a considerable fraction of the Ra-Pr parameter space.
The result is shown in figure 14.4, where the black symbols are from simulation and
red symbols are from experiment. One sees a rather complicated structure. But given
the limited amount of data, experiment and simulation are in general agreement, es-
pecially considering the fact that the simulations are for the true 2D case whereas the
experiments run in a quasi-2D cell. It should again be pointed out that the experi-
mental data point with the highest Ra (= 1.6×109) that still shows a reversal has an
extremely low reversal rate (0.5/day), which corresponds to waiting for ∼ 5500 large
scale turn over time for a single reversal to occur.

From figure 14.4 we conclude that not only for too large Ra (as compared to above
case of figure 1 with Ra = 108 and Pr = 4.3) the reversals do not occur any more,
but also for too large or too small Pr. How to physically understand this complicated
behavior? The key towards an understanding lies, from our point of view, in the role
of the corner flows, and is based on a detailed observation of many movies at various
Ra and Pr (see accompanying material [115]). As stated above, the corner flow rolls
are fed by plumes detaching from the plates’ boundary layers. For too small Pr (i.e.,
too large thermal diffusivity) the thermal energy they carry is lost through thermal
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Figure 14.4: Phase diagrams in the Ra-Pr plane. Red symbols are from experiment and the black
ones from DNS. Circles correspond to detected reversals, crosses to no detected reversals, in spite of
excessive simulation (or observation) time. The straight lines are guides to the eye; they have (from
left to right) slopes 0.25 and 1.00. Note that for small Ra and large Pr (upper left corner of the phase
diagram) the flow is plume dominated, has a very large coherence length, and no developed rolls exist.
However, the angular momentum has zeros.

diffusion.
On the other hand, for too large Pr (i.e., too large kinematic viscosity) the thermal

BL is nested in the kinematic BL and the thermal coupling of the corner flow towards
the thermal BL is hindered. In both cases the buildup of the corner flow and thus the
reversals are suppressed. The situation is similar to the one in rotating RB, where
Ekman vortices form, sucking heat out of the thermal BL and enhancing the heat
flux: Also here there is an optimal Pr≈ 10 for which the Nusselt number is maximal,
and for larger or smaller Pr the very same above mechanisms hinder efficient heat
transport. This is discussed in chapter 7 of this thesis.

We now quantify this argument. The heat influx feeding the corner flow scales
as Jin ∼ κ∆H−1Nu. The outflux of thermal and kinetic energy is either of dif-
fusive or of convective origin. We model it as Jout = Jdi f f

out + Jconv
out . Flow rever-

sal is prevented if Jout > Jin. The convective outflux, which is dominant for large
Pr, is modeled by Jconv

out ∼ Jin · λu/λθ ∼ κ∆H−1Nu2/
√

Re. The diffusive outflux is
Jdi f f

out ∼ κt∆H−1Nu with some effective, turbulent thermal diffusivity κt = νt/Pr ∼
Pr−1U4/ε ∼ κPr2Re4/(NuRa), where we have assumed Prt ≈ Pr and employed the
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k-ε-model [225] for the turbulent viscosity νt .
For dominant diffusive outflux (thus low Pr), suppression of reversals occurs at

κt ≥ κ . The threshold is given by the scaling relation NuRa ∼ Pr2Re4. Insert-
ing Nu(Ra,Pr) and Re(Ra,Pr) either from experiment or from the unifying the-
ory of Grossmann and Lohse [25–27], one obtains a relation between the critical
Prandtl number Prcrit and the critical Rayleigh number Racrit at which reversals stop.
Depending on whether regime Iu, IIu, or IVu of refs. [25] is dominant, we obtain
Prcrit ∼ Raγ

crit , with γ = 3/5 or 2/3, respectively, which correctly reflects the trend in
Fig. 14.4.

For large Pr the convective outflux will be dominant. Here the threshold condi-
tion is κ ∼ κNu/

√
Re, which with Nu(Ra,Pr) and Re(Ra,Pr) in regime Iu of refs.

[25] leads to an Ra-independent Prcrit , beyond which no reversals are possible. The
reality of figure 14.4 is clearly more complicated, but at least the general trends are
consistent with this explanation.

14.5 Conclusions

Finally, we note that we also performed experiments and simulations for Γ = 0.85.
Even for this relatively small change in Γ the overall flow dynamics is very different
and much more complex as compared to the case of Γ = 1. Just as the important
role the corner flows play for reversals, this finding demonstrates the strong effect of
the cell geometry on the overall flow dynamics in the Γ = O(∞) regime. In full 3D
geometries, it may be less pronounced, but it certainly is present, too, see also ref.
[226]. It remains remarkably that the rich structure in the (Ra, Pr, Γ) parameter space
for reversals is hardly reflected in Nu and Re.
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15
Conclusions and Outlook

In this thesis we studied various aspects of turbulent Rayleigh-Bénard (RB) convec-
tion using a combination of experimental, numerical, and theoretical techniques. We
focused on three different aspect, namely (I) high Rayleigh number thermal convec-
tion, (II) rotating RB convection, and (III) two-dimensional RB convection. The most
important conclusions for each part of this thesis are summarized below by answer-
ing the questions that were formulated in the introduction. At the end of this chapter
we conclude with an outlook to the future research on turbulent RB.

15.1 Part I - High Rayleigh number thermal convection

• What effect causes the differences that are observed between the experimental
and numerical results shown in figure 1.2?

The differences are due to underresolved plume dynamics in the simulations. In
chapter 2 we showed that DNS with sufficient resolution using constant temperature
boundary conditions for the horizontal plates are in good agreement with the experi-
mental data of Niemela et al. [35–37] and Ahlers et al. [39–41]. Previous DNS results
by Amati et al. [44] showed a Nusselt number that was up to 30% higher than the
experimental results. The new simulations have been performed with much higher
resolution than the previous ones to properly resolve the plume dynamics. Because in
underresolved simulations the hot (cold) plumes travel further from the bottom (top)
plate than in the better resolved ones, due to insufficient thermal dissipation close to
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the sidewall (where the grid cells are largest), the Nusselt number is overestimated in
underresolved simulations.

• What numerical resolution should be used in the bulk and the boundary layers
to assure that the flow in a DNS is properly resolved?

In chapter 2 we showed that it is crucial to properly resolve the plume dynamics to
accurately determine the Nusselt number in DNS and based on these simulations we
have defined general resolution criteria that have to be fulfilled to have a fully re-
solved DNS. Subsequently, we have used the laminar Prandtl-Blasius boundary layer
theory in chapter 4 to find a lower bound estimate for the number of computational
nodes that should be placed inside the kinetic and thermal boundary layers close to
the horizontal plates.

• What effect causes the differences observed between the several experiments
for Ra & 1011?

Although we do not yet know the full answer we can exclude Pr number effects or
temperature boundary conditions at the bottom plate as a source for the differences.
We have seen in chapter 3 that the practical realization of high Ra number ther-
mal convection involves major technical difficulties (like the use of cryogenic gasses
close to the critical point, pressurized fluids or large temperature differences due to
which the Boussinesq approximation is not valid anymore, heat leakages, or sim-
ply very large systems) that make the correspondence between the experiments and
the theoretical model problem uncertain. This has led to large differences between
the experimentally measured heat transfers in the high Ra number regime in various
labs, see figure 3.2. In chapter 2 and 3 we have used high resolution DNS to study
the origin of these differences between the experiments. We presented results from
simulations in an aspect ratio Γ = 0.5 sample with Pr = 0.7 up to Rayleigh number
Ra = 2×1012, which includes the largest spatially resolved turbulent flow simulation
ever performed in a closed system. These simulations show good agreement with the
experimental results of Niemela et al. [35–37] and Ahlers et al. [39–41], while the
measured heat transport in the experiments of Chavanne et al. [38, 53, 54] is visibly
higher. In chapter 3 we showed that neither Pr number effects, nor a constant heat
flux boundary condition at the bottom plate instead of constant temperature boundary
conditions, lead to an increase in Nu/Ra1/3. Therefore it is still unclear what imper-
fections exactly cause the differences between the experiments. However several
issues, for example the finite conductivity and the temperature control of the sidewall
in the experiments [178], still need to be investigated and we expect that DNS will
play a leading roll in these future studies.
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• How can one determine from experimental sidewall temperature measurements
whether a large scale circulation is present?

In chapter 5 we introduced the relative large scale circulation (LSC) strength, which
we define as the ratio between the energy in the first Fourier mode and the energy
in all modes that can be determined from the azimuthal temperature and azimuthal
vertical velocity profiles, to quantify the large-scale flow. For Ra = 1× 108 we find
that this relative LSC strength is significantly lower in a Γ= 1/2 sample than in a Γ=
1 sample, reflecting that the LSC is much more pronounced in a Γ = 1 sample than
in a Γ = 1/2 sample. The determination of the relative LSC strength can be applied
directly to available experimental data to study the presence of the LSC in high Ra
number thermal convection and rotating RB convection, as is shown in chapter 12.

15.2 Part II - Rotating Rayleigh-Bénard convection

• How does the effect of Ekman pumping depend on Ra and Pr?

We have found that Ekman pumping and associated heat transport enhancement is
optimal for intermediate Pr numbers. However, its effect is reduced with increasing
Ra number. In chapter 6 and chapter 7 we studied the effect of Ekman pumping as
function of the Ra, and Pr with experiments, which were performed in the group of
Guenter Ahlers in Santa Barbara and, by ourselves, at the Fluid Dynamics Laboratory
in Eindhoven, and DNS of rotating RB convection. We found that at fixed Ro the
effect of Ekman pumping is largest, and thus the observed heat transport enhancement
with respect to the non-rotating case highest, at an intermediate Prandtl number. At
lower Pr the effect of Ekman pumping is reduced as more hot fluid that enters the
vertically-aligned-vortices at the base spreads out in the middle of the sample due to
the large thermal diffusivity of the fluid. At higher Pr the thermal boundary layer
becomes thinner with respect to the kinetic boundary layer. This means that the
temperature of the fluid that enters the vortices at the base is lower for higher Pr,
which limits the effect of Ekman pumping. In addition, we found that the effect of
Ekman pumping reduces with increasing Ra. The reason for this is that the turbulent
viscosity increases with increasing Ra, which means that more heat spreads out in the
middle of the sample.

• What happens at the onset of heat transport enhancement?

In chapter 8 and 9 we showed that the heat transport enhancement only occurs above
a bifurcation point at a critical inverse Rossby number 1/Roc. We showed that this
sharp onset is caused by a transition between two different turbulent states. For weak
rotation we find a turbulent state dominated by a large convection roll in the whole
cell, and for strong rotation we find a turbulent state dominated by heat transport in
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vertically-aligned vortices. The DNS showed that no vortices are formed close to
the sidewall. This observation allowed us to explain this phenomenon by building
on bifurcation theory from low-dimensional chaos, to show that the transition from
one turbulent state to the other is a finite-size effect. For samples of infinite size the
convection-roll dominated turbulent state does not exist at any finite rotation rate.

• What is the influence of the aspect ratio in rotating RB convection?

In chapter 9 we showed with a Ginzberg-Landau model that the rotation rate at the
onset of heat transport enhancement depends on the aspect ratio due to the finite
size of the system. It turns out that the onset of heat transport enhancement sets
in at a lower rotation rate when the horizontal extent of the system is increased.
Subsequently, we showed in chapter 10 that the heat transport becomes independent
of the aspect ratio when a sufficiently strong rotation is applied. This is because the
fraction of the horizontal area that is covered with vortices becomes independent of
the aspect ratio for strong enough rotation. In this regime we found that the effect of
the vortex depletion region (closest to the sidewall), and the vortex enhanced region
(next to the vortex depletion region), on the average horizontal area that is covered
with vortices approximately cancel out. At this moment it is not clear whether this is
a general feature or that it depends on Ra and Pr.

• Can the Grossmann-Lohse model be extended in order to describe the heat
transfer in rotating RB convection?

This issue is stil open but for the weakly rotating case at relatively low Ra number an
extension of GL-theory has been derived. In chapter 11 we showed that the onset of
heat transport enhancement does not always show up as a sharp transition, because we
find a smooth onset of heat transport enhancement at relatively low Ra. This smooth
onset can be understood from a model that extends the GL-theory to the weakly
rotating case. However, we emphasize that the GL-theory cannot be extended to
describe the heat transfer in the whole rotating phase space, since the framework of
the GL-theory does not allow the description of the sharp transitions that are observed
at the onset of heat transport enhancement at higher Ra. In addition, one of the main
assumptions of the GL-theory, the presence of a domain filling LSC, is not valid
anymore in the rotating regime as here vertically-aligned vortices are the dominant
flow structures.

• How can changes in the flow structure due to rotation be detected from experi-
mental sidewall temperature measurements?

The measure for the relative strength of the LSC introduced in chapter 5 turned out
to be an excellent tool for this purpose. In chapter 12 we concluded that the LSC dis-
appears when a strong enough rotation is applied by showing that the cosine profile
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in the azimuthal temperature profile, which normally indicates the presence of the
LSC, disappears completely in the rotating regime. However, the vertical wall tem-
perature gradient is still observed in the rotating regime. It turns out that the vertical
wall temperature gradient in the rotating regime is caused by boundary layer dynam-
ics characteristic for rotating flows, which drives a secondary flow that transports hot
fluid up the sidewall in the lower part of the container and cold fluid downwards along
the sidewall in the top part.

15.3 Part III - 2D Rayleigh-Bénard convection

• Do the boundary layer profiles in RB convection agree with the prediction of
the Prandtl-Blasius theory?

In chapter 13 we used (quasi) 2D RB experiments and 2D simulations to show that
the kinetic and thermal boundary layer profiles obtained in experiments and numer-
ical simulation agree excellently with the Prandtl-Blasius profiles, once they are re-
sampled in their respective dynamical reference frame. This result confirms that the
boundary layers behave in a laminar way up to a certain Ra, as is assumed in the GL
theory.

• What mechanism is responsible for the spontaneous flow reversals observed in
2D RB convection?

It is found that the corner rolls play a crucial role in the process of spontaneous rever-
sals. In chapter 14 we also revealed that the presence of spontaneous flow reversals
in 2D RB convection strongly depends on Ra and Pr. Just as heat transport enhance-
ment due to Ekman pumping these flow reversals are only observed for intermediate
Prandtl numbers. Then there is a diagonal large scale convection roll and two smaller
secondary rolls in the two remaining corners diagonally opposing each other. These
corner flow rolls play a crucial role for the large scale wind reversal: They grow in
kinetic energy and thus also in size thanks to plume detachments from the boundary
layers up to the time that they take over the main, large scale diagonal flow, thus
leading to reversals. We find that flow reversals do not occur when the corner rolls
loose too much energy, because then the corner rolls cannot become strong enough to
destroy the main roll. The corner rolls can loose energy due to convective or diffusive
outflux. The diffusive outflux increases with decreasing Pr or increasing Ra, while
the convective outflux increases with increasing Pr. Therefore flow reversals are only
observed for medium Pr numbers and not too large Ra.
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15.4 Future research issues

Since the work of Kolmogorov in 1941 [144] scientists believed that there is only one
state of fully developed turbulence. Therefore the sharp transition between different
turbulent regimes in rotating RB convection is a paradigm shift in the turbulence
community and this phenomenon must be investigated in detail.

Recently, sharp transitions between different turbulent states have also been found
in the von Kármán experiment [129, 184] and in rotating turbulent flows with liquid
sodium [182, 183], where the increase of the magnetic Reynolds number beyond a
certain threshold leads to bifurcations between different turbulent states of the mag-
netic field. Recently, sharp transitions between different turbulent states have also
been observed in high Reynolds number Taylor-Couette flow experiments performed
with the Twente turbulent Taylor-Couette setup [227, 228]. It thus seems that for real
turbulence, where finite-size effects are unavoidable, there are indeed different states
of fully developed turbulence, with a sharp transition in between.

In addition, the recent experiments by Ahlers et al. [42] and Roche et al. [43]
revealed the presence of different turbulent state for Rayleigh Ra & 1012. In this
regime Ahlers et al. [42] found different scaling branches, which seem to be triggered
by the temperature outside the cell, for the heat transfer as function of Ra. In contrast
the experiments of Roche et al. [43] indicate the existence of different turbulent states
for Ra & 1012 and Γ = 0.23. In this case the transition seems to be triggered by the
density of the fluid as they find two different scaling branches for Nu(Ra). An upper
less steep branch for relatively low fluid density and a lower, but steeper branch for
relatively high fluid density. Grossmann and Lohse [63] explained the existence of
these different turbulent states by extending the GL-theory to the high Ra number
regime by assuming that the kinetic boundary layers become turbulent. However,
at this moment it is not clear why a different turbulent state would be triggered by
changing the fluid density or the temperature outside the cell.

We must further explore the existence of different turbulent states in closed sys-
tems. Important questions are: what determines in what state the turbulent flow is?
What are the roles of the boundary layers and how do boundary layers and bulk flow
interact? What are the most appropriate observables to characterize the different tur-
bulent states? When does a transition from one to another turbulent state occur? And
finally: Can one trigger such a transition?

For RB convection these questions must be investigated by a combination of ex-
perimental and numerical work as both methods are complementary. In experiments
the challenge would be to further develop the visualization and measurement tech-
niques to be able to characterize the different turbulent flow states. For rotating RB
convection, where the transition between the different turbulent states takes place
at moderate Ra numbers, this can be obtained by applying direct visualization tech-
niques. However, in high Ra number experiments the systems are not optically acces-
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sible. Therefore information from the flow field inside the sample has to be obtained
with methods like hot-wire anemometry, which are invasive as a sensor has to be
placed inside the flow. In addition, it would be an experimental challenge to exactly
control the boundary conditions at the sidewall, which in fact may be the determining
factor in which turbulent state the flow ends up.

When the transition between the different turbulent states is studied in DNS the
full flow field is available for analysis, while the boundary conditions are exactly
defined. However, in simulations the challenge is to obtain the relevant Ra number
range, as the largest Ra number that is currently obtained in fully resolved DNS is
Ra = 2×1012 at Pr = 0.7 in an aspect ratio Γ = 0.5 sample, see chapter 3, which is
just below the Ra number range in which the transition between the different turbulent
states is observed in experiments. Hence it is required to optimize the numerical
codes for the next generation of supercomputers.

When simulations in the high Ra number regime come available the method in-
troduced by Zhou and Xia to analyze the boundary layer profiles [34], which is also
used in chapter 13, can be used to check whether the kinetic and/or thermal bound-
ary layer become turbulent. In this case the Prandtl-Blasius profile should change
towards a logarithmic profile. This analysis would reveal whether the main assump-
tions in the extension of the GL-theory to the very high Ra number regime [63], where
the boundary layers are expected to become turbulent, are justified. Another effect in
high Ra number convection that should be investigated is the effect of non-Oberbeck-
Boussinesq effects. These effects come into play when a large temperature difference
is applied between the bottom and the top of the sample, because then the fluid prop-
erties are different in the boundary layers close to the bottom and top horizontal plate.
Fontenele-Araujo et al. [105, 136, 220] have already extended the Prandtl-Blasius
boundary layer theory to include these non-Oberbeck-Boussinesq effects. To verify
these theoretical predictions the resulting profiles should be compared with results
from DNS in which the non-Oberbeck-Boussinesq effects are incorporated.

More insight on the mechanisms that cause sharp transitions between different
turbulent states will be obtained when these transitions are studied in different sys-
tems. Just as RB convection, Taylor-Couette flow seems to be a good candidate to
study the existence of different turbulent states. The benefit of both systems is that
they are mathematically very well-defined by the Navier-Stokes equations and the
appropriate boundary conditions, due to which a combination of theoretical, numeri-
cal, and experimental techniques can be applied to analyze the systems. In addition,
for both systems several advanced experimental setups are already available. From a
numerical point of view a combined study of these two systems is favorable due to
the cylindrical geometry of both systems. Hence there is the possibility to transfer
numerical procedures for codes that are developed for both systems.

A large part of this thesis was devoted to analyze rotated RB convection. However,
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as is shown in the rotating RB phase diagrams, see figure 10.1 and 11.1, still only a
relatively small part of the rotating RB parameter regime is investigated. We espe-
cially note that up to now the rotating high Ra number regime has only been achieved
in the experiments of Niemela et al. [81]. Because many natural phenomenon like
the convection in the atmosphere [5] and oceans [6], including the global thermoha-
line circulation [7], are influence by rotation, while the Ra number is very high, it is
very important to understand this regime better. It is especially important to know
how rotation influenced the different turbulent states that are observed in the high Ra
number regime.
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A
Effects in strongly rotated flows

In this appendix we discuss the Thermal wind balance and the Ekman boundary layer
theory in order to familiarize the reader with these effects that come into play in
rotating flows.

A.1 Thermal wind balance

Several effects of rotation, like the thermal wind balance and Ekman pumping close to
the boundaries are described in textbooks, like Kundu [32] and Greenspan [229]. The
thermal wind balance is effective under the influence of strong rotation, i.e. Ro� 1.
Then the effect of viscosity becomes negligible away from the boundaries in the
geostrophic interior. Several terms in equation 1.18 can then be discarded. If we in
addition assume that there is steady flow, i.e. ∂/∂ t = 0 the primary balance of forces
(in component form) becomes:

−2Ωv = −∂ p
∂x

, (A.1)

2Ωu = −∂ p
∂y

, (A.2)

0 = −∂ p
∂ z

+gβθ . (A.3)

The horizontal balance described here is the geostrophic balance and states that iso-
bars coincide with streamlines. In equation A.3 we recognize the hydrostatic balance,
where the density is translated to temperature within the Boussinesq approximation.
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Taking the derivative to y of equation A.1 and the derivative to x of equation A.2, we
arrive at−2Ω(∂u/∂x+∂v/∂y)= 0. With the condition of incompressibility ∇ ·u= 0
it follows that

∂w
∂ z

= 0. (A.4)

After differentiating equations A.1 and A.2 with respect to z and using equation A.3,
one obtains

2Ω
∂v
∂ z

= gβ
∂θ

∂x
, (A.5)

2Ω
∂u
∂ z

= −gβ
∂θ

∂y
. (A.6)

This is the thermal wind balance. It shows that in rotating flows the horizontal tem-
perature gradients cause vertical gradients in the horizontal velocity components. It
also shows that the vertical gradients of the vertical velocity component are always
zero, but this does not mean that the vertical velocity has to be zero.

When we in addition assume that the temperature only depends on the vertical
coordinate we get the Taylor Proudman case, where

∂v
∂ z

=
∂u
∂ z

= 0. (A.7)

Equations A.4 and A.7 show that

∂u
∂ z

= 0, (A.8)

which means that the velocity vector cannot vary in the direction of ΩΩΩ, It shows
that the vertical gradients of the velocity are prohibited away from the walls. Note
however that the velocities do not have to be zero. This theorem was first derived by
Taylor in 1916 and demonstrated experimentally by Taylor soon afterwards.

A.2 Ekman pumping

We consider now a rotating fluid (with the rotation axis vertical) above a horizontal
flat plate. The Rossby number is much smaller than one and the flow is quasi-steady.
The flow in the bulk is in geostrophic balance, with the velocity ub, while the velocity
in the Ekman boundary layer is uE . There is a no-slip condition at the horizontal
plates, i.e.

uE = 0 at z = 0, (A.9)
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while uE is matched to the bulk flow, thus

uE = ub at z→ ∞. (A.10)

Inside the Ekman boundary layer region (of typical thickness δE) the approximation
is applied that in the viscous term only the vertical derivates are relevant:

−2ΩvE = −∂ pE

∂x
+ν

∂ 2uE

∂ z2 , (A.11)

2ΩuE = −∂ pE

∂y
+ν

∂ 2vE

∂ z2 , (A.12)

0 = −∂ pE

∂ z
+ν

∂ 2wE

∂ z2 . (A.13)

With the incompressibility condition it is found that the vertical velocity compo-
nent (wE) is much smaller than the horizontal components. Furthermore, the vertical
derivative of the pressure is assumed to be zero inside the boundary layer (as for the
Prandtl-Blasius boundary layer). This allows the matching of pE and pb, which gives
for pE :

−2Ωvb =−
∂ pb

∂x
=−∂ pE

∂x
, (A.14)

2Ωub =−
∂ pb

∂y
=−∂ pE

∂y
. (A.15)

Combining this with equation A.11 and A.12 gives

−2ΩvE = −2Ωvb +ν
∂ 2uE

∂ z2 , (A.16)

2ΩuE = +2Ωub +ν
∂ 2vE

∂ z2 . (A.17)

Multiplying equation A.16 with i and adding equation A.17, gives

2iΩ(uE + ivE) = 2iΩ(ub + ivb)+ν
∂ 2(uE + ivE)

∂ z2 . (A.18)

Here i indicates the complex number. Solving the differential equation with respect
to the boundary conditions gives the following solutions inside the Ekman layer

uE = ub− [ub cos(z/δE)+ vb sin(z/δE)]exp(−z/δE), (A.19)

vE = vb +[ub sin(z/δE)− vb cos(z/δE)]exp(−z/δE). (A.20)
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With the incompressibility condition and ∂wb/∂ z = 0, from assuming the bulk to be
in the Taylor-Proudman regime, we find

∂wE

∂ z
= −∂uE

∂x
− ∂vE

∂y
= (A.21)

= −
(

∂ub

∂x
+

∂vb

∂y

)
[1− exp(−z/δE)cos(z/δE)]

+

(
∂vb

∂x
− ∂ub

∂y

)
[exp(−z/δE)sin(z/δE)] ,

where the first term on the right hand side is zero due to incompressibility (as ∂ub/∂x+
∂vb/∂y = 0, because ∂wb/∂ z = 0 as a result of Taylor Proudman). The term between
the brackets in the second part is equal to the z-component of the vorticity ωb. This
simplifies the above to

∂wE

∂ z
= ωb exp(−z/δE)sin(z/δE), (A.22)

Thus the vertical velocity is

wE = 1
2 ωbδE (1− exp(−z/δE) [sin(z/δE)+ cos(z/δE)]) . (A.23)

The Ekman boundary layer produces a vertical flow in the bulk interior, which can
be found by matching wb and wE at z→ ∞, which gives

wb = 1
2 ωbδE . (A.24)

In this way the Ekman boundary layer actively influences the bulk flow. For a positive
bulk vorticity this is known as Ekman pumping and for a negative bulk vorticity as
Ekman suction.



B
Vortex identification in rotating

Rayleigh-Bénard convection ∗

A major question in rotating Rayleigh-Bénard is how to exactly identify and charac-
terize the vortices from experimentally or numerically obtained velocity maps. In this
thesis we use the so-called Q2D-criterion to determine the fraction of the horizontal
area that is covered with vortices as function of the rotation rate to show that there is a
strong increase in the number of vortices at the onset of heat transport enhancement,
see chapter 9. In that chapter we find that the rotation rate at the onset of heat trans-
port enhancement depends on the aspect ratio of the system. This is explained by a
Ginzberg-Landau model, which takes the finite size effects of the system into account
by assuming that no vortices are formed close to the sidewall. The assumptions of
this model are confirmed by the analysis with this method which is explained in this
appendix: The results in chapter 9 and 10 confirm that indeed no vortices are formed
close to the sidewall.

To identify vortices, the vorticity itself may seem to be an obvious first-hand cri-
terion. However, vorticity is also found in shear dominated regions. Therefore, more
complicated quantities need to be used. Many others, e.g. Refs. [187, 230–235],
have provided criteria that can be used for the detection of vortices, mostly based on
the velocity gradient tensor ∇u. One can namely use the two-dimensional velocity

∗Based on the EPAPS document of: R.J.A.M. Stevens, J.Q. Zhong, H.J.H. Clercx, G. Ahlers, and
D. Lohse, Transitions between Turbulent States in Rotating Rayleigh-Bénard Convection, Phys. Rev.
Lett. 103, 024503 (2009).
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gradient tensor,

∇u =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
. (B.1)

This tensor can be split into a symmetric and antisymmetric part [187]:

∇u =
1
2
[
∇u+(∇u)T ]+ 1

2
[
∇u− (∇u)T ]= S+ Ω̃ (B.2)

where S, the symmetric part, is also known as the rate-of-strain tensor, and Ω̃, the
anitsymmetric part, is also known as the vorticity tensor.

A criterion introduced by Hunt et al. [232] (intended for three dimensional flows)
is the so-called Q criterion, which defines a vortex as a spatial region where

Q≡ 1
2

(
‖ Ω̃ ‖2 − ‖ S ‖2

)
> 0, (B.3)

with the notation ‖ A ‖=
√

Tr(AAT ) the Euclidean form.
Vorobieff & Ecke [74, 96] use a criterion based on the local flow topology: within

vortices the eigenvalues of ∇u are complex. Hence the vortex detection criterion is
(Eq. 2 of Ref. [96]):

f ≡ [Tr(∇u)]2−4det(∇u)< 0 (B.4)

The exact form we use in this thesis can be found in [187, 193]

Q2D ≡
(

∂u
∂x
− ∂v

∂y

)2

+

(
∂v
∂x

+
∂u
∂y

)2

−
(

∂v
∂x
− ∂u

∂y

)2

(B.5)

In the space occupied by a vortex Q2D < 0.
Previous results, based on experimental and numerical data, using the above anal-

ysis can be found in Kunnen et al. [92], where contour plots at the height z = 0.5
and z = 0.8 for Ro = 0.45 and volume representations for different Ro are given. In
addition Kunnen et al. [92] determined the number and average size of the vortices
close to the plates.



C
Bödewadt, Ekman, von Kármán model ∗

In this appendix the results obtained from the model with weak background rotation
will be compared with analytic results obtained from Ekman BL theory [229], which
uses a rotating reference frame. In the Ekman case the fluid at infinity is rotating
at almost the same velocity as the disk, i.e. the limiting case of the model will be
checked. We will indicate all quantities calculated in the rotating reference frame
with an asterisk.

We will use the BEK (Bödewadt, Ekman, von Kármán) model, presented in
[204, 236, 237], to derive a similar ODE as in section 11.3 for the temperature ad-
vection equation in the rotating reference frame. In the BEK model the following
self-similarity assumption for the axial velocity is proposed:

w =
√

νΩ∗Ro∗H∗(ξ ), (C.1)

where ξ = z
√

Ω∗/ν . Here, Ω∗ is a system rotation rate, and Ro∗ is a constant deter-
mined by the rotation rate. We call this still the Rossby number since it also represents
a dimensionless inverse rotation. In the BEK model Ro∗, ∆Ω, and Ω∗, respectively,
are defined as

Ro∗ =
∆Ω

Ω∗
, (C.2)

∆Ω = ΩF −ΩD, (C.3)

∗Based on the appendix of: R.J.A.M. Stevens, H.J.H. Clercx, and D. Lohse, Boundary layers in
rotating weakly turbulent Rayleigh-Bénard convection, Phys. Fluids, 22, 085103 (2010).
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Ω
∗ =

ΩF

2−Ro∗
+

ΩD

2+Ro∗
. (C.4)

We obtain the following temperature advection equation in the BEK model

θ̃
′′
= PrH∗(ξ )Ro∗θ̃ ′. (C.5)

From Eqs. (C.2)-(C.4) one obtains, after some algebra,

s =
ΩF

ΩD
=

[
2+Ro∗−Ro∗2

2−Ro∗−Ro∗2

]
. (C.6)

This means for the Ekman case (s ≈ 1, i.e. Ro∗→ 0) that ΩF ' ΩD(1+Ro∗). Thus
when the fluid at infinity is rotating slower than the disk Ro∗ is negative. From now
on we assume Ro∗ to be negative, i.e. s < 1.

Using Ekman BL theory [229] one can derive analytic solutions for the radial and
tangential velocity profiles in the rotating reference frame. These analytical solutions
read [229]:

uE = −∆Ωre−ζ sinζ = rΩ
∗Ro∗F∗(ζ ) , (C.7)

vE = ∆Ωr(1− e−ζ cosζ ) = rΩ
∗Ro∗G∗(ζ ) , (C.8)

with ζ as in (11.1). With the analytic expression for the radial velocity (C.7) and the
continuity equation one obtains

wE = ∆Ω

√
ν

ΩD

(
1− e−ζ [sinζ + cosζ ]

)
=
√

νΩ∗Ro∗H∗(ζ ) . (C.9)

In the case Ro∗→ 0 it is found that ΩD ≈ Ω∗, thus ξ ≈ ζ . In particular, the expres-
sion for the axial flow reduces to H∗(ξ ) =

√
Ω∗/ΩD(1− e−ξ [sinξ + cosξ ]), where√

Ω∗/ΩD ≈ 1. We find that the analytic expressions and the above numerical solu-
tions are identical within numerical accuracy for the limiting case (Ekman solution,
s ≈ 1,Ro∗→ 0). (Note that a coordinate transformation has to be applied as the Ek-
man solution is expressed in the corotating reference frame, whereas the numerical
solution has been defined in the laboratory frame.)

Now we use this approach to calculate the BL characteristics for the Ekman layer.
With the temperature advection equation (C.5) and the analytic expression H∗(ξ )
for the axial velocity we determine the effective scaling exponent γ in λ θ ∼ Prγ as
function of Pr for Ro∗ = −10−3 and Ro∗ = −10−5. Fig. 11.13 shows that when
Ro∗ goes to zero the low Pr regime (λ θ � λ u) is extended to higher Pr, because the
kinetic BL thickness becomes thinner and the axial velocity becomes smaller, i.e. the
thermal BL becomes thicker.
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Substitution of H∗(ξ ) in (C.5) yields the following expression for the temperature
gradient in the Ekman layer

dθ̃

dξ
=C1e[(e−ξ cosξ+ξ)PrRo∗], (C.10)

where C1 is a constant of integration which does not depend on ξ . To determine the
constant C1, and thereby Nu, one needs to integrate Eq. (C.10). An analytic result can
be derived by substituting cosξ = (eiξ + e−iξ )/2, A = PrRo∗, z = Aξ , B = (i−1)/A
(and B the complex conjugate of B), and evaluate the integral

θ̃(z) =
C1

A

∫
eze

1
2 AeBz

e
1
2 AeBz

dz+C2 . (C.11)

The integration constants C1 and C2 are determined by the boundary conditions θ̃(ξ =
0) = 1 and θ̃(ξ → ∞) = 0: C2 = 0 and, for small A,

1
C1
≈ 1

A
− 1

2
A− 3

16
A2 +O(A3) . (C.12)

The thermal BL thickness scales according to λ θ ∝ e−A/C1. With (C.12) we im-
mediately see that in the small Prandtl number limit: λ θ ∝ Pr−1. Comparison with
Fig. 11.13b reveals that the analytic results are in good agreement with the numer-
ical data for λ θ represented by the solid lines. Moreover, it predicts the scaling for
Ro∗ = −1 (the von Kármán case, thus far outside the regime of applicability of the
Ekman analysis) surprisingly well, see Fig. 11.13b.
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Summary

Turbulent convection in a layer of fluid contained between two parallel plates heated
from below and cooled from above, known as RB convection, continues to be a topic
of intense research. RB convection is highly relevant to better understand many prob-
lems in which heat transfer plays a crucial role. Key-examples include convection in
the arctic ocean, in Earth’s outer core, in the interior of gaseous giant planets, and in
the outer layer of the Sun. Thus the problem is of interest in a wide range of sciences,
including geology, oceanography, climatology, and astrophysics. Furthermore, there
are various industrial applications, which can only be optimized when heat trans-
fer, and particularly its interplay with rotation, is understood better. Because the RB
problem is very cleanly defined it offers unique possibilities to combine experimental,
theoretical, and numerical techniques and is hence ideally suited to test new concepts
in fluid dynamics.

This thesis covers three main topics: Part I - High Rayleigh number thermal con-
vection, Part II - Rotating RB convection, and Part III - 2D RB convection.

In part I we studied high Ra number thermal convection. There have been several
experiments in which the heat transfer in the high Ra number regime was measured.
Unfortunately, there are considerable disagreements between some of these experi-
ments. These differences might be caused by the practical difficulties that arise in
these measurements. In an attempt to find the effect that is responsible we compare
the experimental results with accurate DNS. In chapter 2 we showed that there is a
good agreement between experiments and DNSs up to Ra = 2× 1011 when a suffi-
cient numerical resolution is used. However, when a simulation is underresolved the
measured heat transport in the simulations is too high, due to insufficient dissipation
of the plumes close to the sidewall. This effect explains the difference observed be-
tween experiments and earlier DNS. Based on this experience we formulated general
resolution criteria that should be satisfied in a properly resolved DNS. In chapter 3
we extend the simulations presented in chapter 2 up to Ra = 2× 1012, which is the
largest simulation of bounded turbulent flow up to date. In addition, we study the
effect of the Pr number and the temperature boundary condition at the bottom plate
on the heat transport. The numerical results at Ra = 2×1012 are in good agreement
with the results of Ahlers et al. and Niemela et al. while there is a visible difference
with the Chavanne et al. measurements. The simulations do not show any increase in
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Nu/Ra1/3, neither due to Pr number effects, nor due to a constant heat flux boundary
condition at the bottom plate instead of constant temperature boundary conditions.
In chapter 4 we determine, based on the laminar Prandtl-Blasius boundary layer the-
ory, a lower bound for the number of computational grid nodes that should be placed
inside the boundary layers in DNSs. These estimates have been used throughout this
thesis to make sure that the presented simulations are properly resolved. Finally, in
chapter 5 we introduce a new method, which uses the data of (numerical) probes
placed inside the sidewall (close to the boundary), to determine whether the LSC is
present. The method can be applied directly to available experimental data of high
Ra number experiments to determine the relative LSC strength. In part II we used
this method to determine what rotation rate is needed to destroy the LSC in rotating
RB convection.

In part II we study rotating RB convection. When the rotation rate is increased
the heat transport first increases, before it rapidly decreases due to a suppression of
the vertical velocity fluctuations. The initial increase in the heat transport is due to
Ekman pumping. In chapter 6 and 7 we show that the effect of Ekman pumping
depends strongly on Ra and Pr. We found that at fixed Ro number the effect of
Ekman pumping is largest, and thus the observed heat transport enhancement with
respect to the non-rotating case highest, at an intermediate Prandtl number. At lower
Pr the effect of Ekman pumping is reduced as more hot fluid that enters the vertically-
aligned vortices at the base spreads out in the middle of the sample due to the large
thermal diffusivity of the fluid. At higher Pr the thermal boundary layer becomes
thinner with respect to the kinetic boundary layer. This means that the temperature
of the fluid that enters the vortices at the base is lower for higher Pr, which limits
the effect of Ekman pumping. The effect of Ekman pumping also reduces when Ra
is increased. This is because the turbulent viscosity increases with increasing Ra,
which means that more heat spreads out in the middle of the sample. In chapter 8
we find that the onset of heat transport enhancement occurs with a sharp transition,
which coincides with a transition between two different turbulent flow states, one
dominated by a large convection roll in the whole cell for weak rotation, and one
dominated by heat transport in local vertically-aligned vortices for strong rotation.
Such a sharp transition is uncommon in turbulence as normally the large random
fluctuations in space and time assure that the phase-space is always fully explored by
the dynamics, and then transitions between potentially different states that might be
explored as a control parameter is changed are washed out. In chapter 9 we find that
this sharp transition between the different turbulent states in rotating RB convection
is caused by the finite size of the system. Here we show that the rotation rate at
onset decreases with increasing aspect ratio. In chapter 10 we study the influence of
the aspect ratio on the heat transport for stronger rotation and we find that the heat
transport becomes independent of the aspect ratio when the rotation is sufficiently
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strong. In chapter 11 we study the influence of rotation on the boundary layers close
to the horizontal plates. Based on these results we formulate a model to explain the
smooth heat transport enhancement that is observed for relatively low Ra numbers.
Finally, in chapter 12 we show, based on numerical simulations and experimental
sidewall measurements, that the LSC disappears when a strong enough rotation is
applied. However, the vertical wall temperature gradient is still observed. It turns
out that the vertical wall temperature gradient in the rotating regime is caused by
boundary layer dynamics characteristic for rotating flows. It drives a secondary flow
that transports hot fluid up the sidewall in the lower part of the container and cold
fluid downwards along the sidewall in the top part.

In part III we study (quasi) 2D RB convection in experiments and DNS. In chap-
ter 13 we characterize the boundary layer profiles close to the horizontal plates. The
results show that both the temperature and velocity profiles agree well with the clas-
sical Prandtl-Blasius boundary layer profiles. This result further confirms that one of
the key assumptions of the Grossmann-Lohse theory is justified. In chapter 14 we
analyze the spontaneous flow reversals of the large scale flow in a (quasi) 2D RB
system with flow visualization experiments and DNS. For intermediate Pr numbers
there is a diagonal large scale convection roll and two smaller secondary rolls in the
two remaining corners diagonally opposing each other. These corner flow rolls play
a crucial role for the large scale wind reversal: They grow in kinetic energy and thus
also in size thanks to plume detachments from the boundary layers up to the time that
they take over the main large scale diagonal flow, thus leading to reversal.





Samenvatting

In Rayleigh-Bénard convectie wordt een laag vloeistof, die zich tussen twee paral-
lelle platen bevindt, van onderen verwarmd en van boven gekoeld. Er wordt veel
onderzoek gedaan aan RB convectie, omdat het probleem zeer relevant is om veel
situaties waarin warmte-overdracht een cruciale rol speelt beter te begrijpen. Belang-
rijke voorbeelden zijn convectie in de Arctische Oceaan, in de buitenste kern van de
aarde, in het binnenste van gasvormige planeten, en in de buitenste laag van de zon.
Het fenomeen is dus van belang in een breed scala van wetenschappen, zoals geolo-
gie, oceanografie, klimatologie en astrofysica. Daarnaast zijn er diverse industriële
toepassingen die alleen geoptimaliseerd kunnen worden wanneer warmte-overdracht,
en met name de interactie met rotatie, beter begrepen wordt. Het RB probleem is zeer
precies omschreven en dit biedt unieke mogelijkheden om experimentele, theore-
tische en numerieke technieken te combineren. Daardoor is RB convectie bij uitstek
geschikt om nieuwe concepten in de stromingsleer te testen.

Dit proefschrift omvat drie hoofdonderwerpen: deel I - Thermische convectie bij
hoge Ra getallen, deel II - Roterende RB convectie, en deel III - 2D RB convectie.

In deel I onderzoeken we thermische convectie in het hoge Ra getal regime. Er
zijn verschillende experimenten waarbij de warmte-overdracht in dit regime is geme-
ten. Helaas zijn er aanzienlijke verschillen tussen een aantal van deze experimenten.
Deze verschillen kunnen veroorzaakt worden door de praktische moeilijkheden die
zich voordoen bij deze metingen. In een poging om het effect dat verantwoordelijk
is voor deze verschillen te vinden vergelijken we de experimentele resultaten met
nauwkeurige simulaties. In hoofdstuk 2 laten we zien dat er een goede overeenkomst
is tussen de experimenten en de simulaties tot Ra = 2×1011 wanneer de numerieke
resolutie voldoende is. Maar in simulaties die zijn uitgevoerd met een te lage nu-
merieke resolutie is het gemeten warmte-transport te hoog, omdat de pluimen dicht
bij de zijwand dan onvoldoende gedissipeerd worden. Dit effect verklaart het verschil
tussen experimenten en eerdere simulaties. Op basis van deze ervaring hebben we al-
gemene resolutie criteria geformuleerd waaraan een voldoende opgeloste simulatie
moet voldoen. In hoofdstuk 3 breiden we de simulaties gepresenteerd in hoofdstuk
2 uit tot Ra = 2× 1012, momenteel de grootste simulatie van een turbulente stro-
ming in een volledig afgesloten domein. Daarnaast bestuderen we het effect van Pr
en de temperatuur randvoorwaarde aan de bodemplaat op het warmte-transport. De
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numerieke resultaten voor Ra = 2×1012 zijn in goede overeenstemming met de ex-
perimentele resultaten van Ahlers et al. en Niemela et al., terwijl er met de metingen
van Chavanne et al. een zichtbaar verschil is. De simulaties tonen geen verhoging
van Nu/Ra1/3, noch als gevolg van Pr effecten, noch als gevolg van een constante
warmte-aanvoer bij de bodemplaat in plaats van constante temperatuur. In hoofdstuk
4 bepalen we, op basis van de laminaire Prandtl-Blasius grenslaag theorie, een on-
dergrens voor het aantal rooster punten dat in de grenslaag geplaatst moet worden.
Deze schatting is gebruikt in de rest van dit proefschrift om ervoor te zorgen dat de
resolutie in de gepresenteerde simulaties voldoende is. In hoofdstuk 5 introduceren
we een nieuwe methode, waarin de gegevens van (numerieke) sensoren geplaatst in
(dicht bij) de zijwand, gebruikt worden om te bepalen of de LSC aanwezig is. Deze
methode kan direct worden toegepast op beschikbare data van experimenten die zijn
uitgevoerd voor hoge Ra getallen om de relatieve LSC sterkte te bepalen. In deel II
hebben we deze methode gebruikt om te bepalen bij welke rotatie snelheid de LSC
verdwijnt in roterende RB convectie.

In deel II onderzoeken we roterende RB convectie. Als de rotatiesnelheid wordt
verhoogd dan neemt het warmte transport eerst toe, voordat het snel afneemt als
gevolg van de onderdrukking van de verticale snelheidsvariaties. De aanvankelijke
toename van het warmte transport wordt veroorzaakt door Ekmantransport. In hoofd-
stuk 6 en 7 laten we zien dat het effect van Ekmantransport sterk afhangt van Ra en
Pr. We laten zien dat voor vaste Ro het effect van Ekmantransport, en dus de toe-
name in het warmtetransport met betrekking tot het niet-roterende geval, het grootste
is voor tussenliggende Pr. Bij lagere Pr wordt het effect van Ekmantransport ver-
minderd doordat meer hete vloeistof die de verticaal uitgelijnde wervels binnenkomt
bij de basis zich uitspreidt in het midden van de container. Oorzaak is de grotere
thermische diffusie van de vloeistof bij lage Pr. Bij hogere Pr is de thermische
grenslaag dunner in verhouding tot de kinetische grenslaag. Dit betekent dat de tem-
peratuur van de vloeistof die de wervels bij de basis binnengaat lager is voor hogere
Pr. Dit beperkt het effect van Ekmantransport. Het effect van Ekmantransport wordt
ook lager wanneer Ra wordt verhoogd. Dit komt doordat de turbulente viscositeit
toeneemt met Ra, waardoor meer warmte zich verspreidt in het midden van de con-
tainer. In hoofdstuk 8 laten we zien dat de toename van het warmtetransport plotse-
ling inzet. Dit komt door een overgang tussen twee verschillende turbulente regimes.
Bij zwakke rotatie wordt de stroming gedomineerd door een grote convectie rol in
de gehele cel en bij sterke rotatie wordt de stroming gedomineerd door warmte-
transport in de lokale verticaal uitgelijnde wervels. Een scherpe overgang tussen
verschillende turbulente regimes is ongewoon in turbulentie, omdat meestal de grote
willekeurige fluctuaties in ruimte en tijd ervoor zorgen dat de overgangen tussen po-
tentieel verschillende regimes worden afgevlakt. In hoofdstuk 9 laten we zien dat
deze scherpe overgang tussen de verschillende turbulente toestanden in roterende RB
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convectie wordt veroorzaakt door de eindige grootte van het systeem. Hier laten we
zien dat de rotatie snelheid waarbij de toename in het warmtetransport begint lager is
als het systeem breder is. In hoofdstuk 10 bestuderen we de invloed van de breedte
van het systeem op het warmtetransport bij sterkere rotatie en we laten zien dat het
warmtetransport niet meer van de breedte afhangt als de rotatie voldoende sterk is.
In hoofdstuk 11 bestuderen we de invloed van rotatie op de grenslagen dicht bij de
horizontale platen. Op basis van deze resultaten formuleren we een model om de
geleidelijke toename in het warmtetransport, die is waargenomen voor relatief lage
Ra, te verklaren. In hoofdstuk 12 tonen we, op basis van numerieke simulaties en ex-
perimentele zijwand metingen, aan dat de LSC verdwijnt wanneer het systeem snel
genoeg wordt geroteerd. Maar de verticale temperatuurgradiënt aan de wand wordt
nog steeds waargenomen. Het blijkt dat de verticale temperatuurgradiënt aan de wand
in het roterende regime wordt veroorzaakt door grenslaag dynamiek, die kenmerkend
is voor roterende stromingen. Hierdoor wordt een secundaire stroming, die warme
vloeistof omhoog brengt langs de zijwand in het onderste deel van de container en
koude vloeistof naar beneden in het bovenste deel van de container, gecreeërd.

In deel III onderzoeken we (quasi) 2D RB convectie in experimenten en simu-
laties. In hoofdstuk 13 karakteriseren we de grenslaag profielen dicht bij de horizon-
tale platen. De resultaten tonen aan dat de temperatuur en snelheid profielen goed
overeenkomen met de klassieke Prandtl-Blasius grenslaag profielen. Dit resultaat
bevestigt dat een van de belangrijkste aannames van de Grossmann-Lohse theorie
gerechtvaardigd is. In hoofdstuk 14 analyseren we de spontane omkering van de
grootschalige wervel in een (quasi) 2D RB systeem door middel van simulaties en
experimenten waarin de stroming wordt gevisualiseerd. Voor tussenliggende Pr is
er een diagonale grootschalige wervel en zwakkere wervels in de resterende twee
hoeken schuin tegenover elkaar. Deze wervels in de hoeken spelen een cruciale rol
in de omkering van de grootschalige wervel. De kracht van de wervel in de hoeken
neemt langzaam toe door pluimen die van de onderplaat loskomen totdat de wervel
in de hoek sterk genoeg is om de grootschalige diagonale wervel over te nemen en
dit leidt tot een omdraaiing van de grootschalige diagonale wervel.
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